Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqcomi | Structured version Visualization version GIF version |
Description: Inference from commutative law for class equality. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
eqcomi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eqcomi | ⊢ 𝐵 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcomi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | eqcom 2747 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ 𝐵 = 𝐴 |
Copyright terms: Public domain | W3C validator |