| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqcomi | Structured version Visualization version GIF version | ||
| Description: Inference from commutative law for class equality. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| eqcomi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqcomi | ⊢ 𝐵 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcomi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eqcom 2744 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ 𝐵 = 𝐴 |
| Copyright terms: Public domain | W3C validator |