|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rblem3 | Structured version Visualization version GIF version | ||
| Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| rblem3 | ⊢ (¬ (𝜒 ∨ 𝜑) ∨ ((𝜒 ∨ 𝜓) ∨ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rb-ax2 1752 | . 2 ⊢ (¬ (𝜑 ∨ (𝜒 ∨ 𝜓)) ∨ ((𝜒 ∨ 𝜓) ∨ 𝜑)) | |
| 2 | rblem2 1757 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜒) ∨ (𝜑 ∨ (𝜒 ∨ 𝜓))) | |
| 3 | rb-ax2 1752 | . . 3 ⊢ (¬ (𝜒 ∨ 𝜑) ∨ (𝜑 ∨ 𝜒)) | |
| 4 | 2, 3 | rbsyl 1755 | . 2 ⊢ (¬ (𝜒 ∨ 𝜑) ∨ (𝜑 ∨ (𝜒 ∨ 𝜓))) | 
| 5 | 1, 4 | rbsyl 1755 | 1 ⊢ (¬ (𝜒 ∨ 𝜑) ∨ ((𝜒 ∨ 𝜓) ∨ 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ∨ wo 847 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 | 
| This theorem is referenced by: rblem6 1761 | 
| Copyright terms: Public domain | W3C validator |