Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rblem2 | Structured version Visualization version GIF version |
Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rblem2 | ⊢ (¬ (𝜒 ∨ 𝜑) ∨ (𝜒 ∨ (𝜑 ∨ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rb-ax2 1755 | . . 3 ⊢ (¬ (𝜓 ∨ 𝜑) ∨ (𝜑 ∨ 𝜓)) | |
2 | rb-ax3 1756 | . . 3 ⊢ (¬ 𝜑 ∨ (𝜓 ∨ 𝜑)) | |
3 | 1, 2 | rbsyl 1758 | . 2 ⊢ (¬ 𝜑 ∨ (𝜑 ∨ 𝜓)) |
4 | rb-ax1 1754 | . 2 ⊢ (¬ (¬ 𝜑 ∨ (𝜑 ∨ 𝜓)) ∨ (¬ (𝜒 ∨ 𝜑) ∨ (𝜒 ∨ (𝜑 ∨ 𝜓)))) | |
5 | 3, 4 | anmp 1753 | 1 ⊢ (¬ (𝜒 ∨ 𝜑) ∨ (𝜒 ∨ (𝜑 ∨ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 |
This theorem is referenced by: rblem3 1761 rblem4 1762 re2luk3 1769 |
Copyright terms: Public domain | W3C validator |