MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rbsyl Structured version   Visualization version   GIF version

Theorem rbsyl 1758
Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
rbsyl.1 𝜓𝜒)
rbsyl.2 (𝜑𝜓)
Assertion
Ref Expression
rbsyl (𝜑𝜒)

Proof of Theorem rbsyl
StepHypRef Expression
1 rbsyl.2 . 2 (𝜑𝜓)
2 rbsyl.1 . . 3 𝜓𝜒)
3 rb-ax1 1754 . . 3 (¬ (¬ 𝜓𝜒) ∨ (¬ (𝜑𝜓) ∨ (𝜑𝜒)))
42, 3anmp 1753 . 2 (¬ (𝜑𝜓) ∨ (𝜑𝜒))
51, 4anmp 1753 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845
This theorem is referenced by:  rblem1  1759  rblem2  1760  rblem3  1761  rblem4  1762  rblem5  1763  rblem6  1764  re2luk1  1767  re2luk2  1768  re2luk3  1769
  Copyright terms: Public domain W3C validator