|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rbsyl | Structured version Visualization version GIF version | ||
| Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| rbsyl.1 | ⊢ (¬ 𝜓 ∨ 𝜒) | 
| rbsyl.2 | ⊢ (𝜑 ∨ 𝜓) | 
| Ref | Expression | 
|---|---|
| rbsyl | ⊢ (𝜑 ∨ 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rbsyl.2 | . 2 ⊢ (𝜑 ∨ 𝜓) | |
| 2 | rbsyl.1 | . . 3 ⊢ (¬ 𝜓 ∨ 𝜒) | |
| 3 | rb-ax1 1751 | . . 3 ⊢ (¬ (¬ 𝜓 ∨ 𝜒) ∨ (¬ (𝜑 ∨ 𝜓) ∨ (𝜑 ∨ 𝜒))) | |
| 4 | 2, 3 | anmp 1750 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓) ∨ (𝜑 ∨ 𝜒)) | 
| 5 | 1, 4 | anmp 1750 | 1 ⊢ (𝜑 ∨ 𝜒) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ∨ wo 847 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 | 
| This theorem is referenced by: rblem1 1756 rblem2 1757 rblem3 1758 rblem4 1759 rblem5 1760 rblem6 1761 re2luk1 1764 re2luk2 1765 re2luk3 1766 | 
| Copyright terms: Public domain | W3C validator |