Proof of Theorem rblem6
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | rblem6.1 | . 2
⊢  ¬
(¬ (¬ 𝜑 ∨ 𝜓) ∨ ¬ (¬ 𝜓 ∨ 𝜑)) | 
| 2 |  | rb-ax4 1754 | . . . . . . 7
⊢ (¬
(¬ (¬ 𝜑 ∨ 𝜓) ∨ ¬ (¬ 𝜑 ∨ 𝜓)) ∨ ¬ (¬ 𝜑 ∨ 𝜓)) | 
| 3 |  | rb-ax3 1753 | . . . . . . 7
⊢ (¬
¬ (¬ 𝜑 ∨ 𝜓) ∨ (¬ (¬ 𝜑 ∨ 𝜓) ∨ ¬ (¬ 𝜑 ∨ 𝜓))) | 
| 4 | 2, 3 | rbsyl 1755 | . . . . . 6
⊢ (¬
¬ (¬ 𝜑 ∨ 𝜓) ∨ ¬ (¬ 𝜑 ∨ 𝜓)) | 
| 5 |  | rb-ax2 1752 | . . . . . 6
⊢ (¬
(¬ ¬ (¬ 𝜑 ∨
𝜓) ∨ ¬ (¬ 𝜑 ∨ 𝜓)) ∨ (¬ (¬ 𝜑 ∨ 𝜓) ∨ ¬ ¬ (¬ 𝜑 ∨ 𝜓))) | 
| 6 | 4, 5 | anmp 1750 | . . . . 5
⊢ (¬
(¬ 𝜑 ∨ 𝜓) ∨ ¬ ¬ (¬ 𝜑 ∨ 𝜓)) | 
| 7 |  | rblem3 1758 | . . . . 5
⊢ (¬
(¬ (¬ 𝜑 ∨ 𝜓) ∨ ¬ ¬ (¬ 𝜑 ∨ 𝜓)) ∨ ((¬ (¬ 𝜑 ∨ 𝜓) ∨ ¬ (¬ 𝜓 ∨ 𝜑)) ∨ ¬ ¬ (¬ 𝜑 ∨ 𝜓))) | 
| 8 | 6, 7 | anmp 1750 | . . . 4
⊢ ((¬
(¬ 𝜑 ∨ 𝜓) ∨ ¬ (¬ 𝜓 ∨ 𝜑)) ∨ ¬ ¬ (¬ 𝜑 ∨ 𝜓)) | 
| 9 |  | rb-ax2 1752 | . . . 4
⊢ (¬
((¬ (¬ 𝜑 ∨ 𝜓) ∨ ¬ (¬ 𝜓 ∨ 𝜑)) ∨ ¬ ¬ (¬ 𝜑 ∨ 𝜓)) ∨ (¬ ¬ (¬ 𝜑 ∨ 𝜓) ∨ (¬ (¬ 𝜑 ∨ 𝜓) ∨ ¬ (¬ 𝜓 ∨ 𝜑)))) | 
| 10 | 8, 9 | anmp 1750 | . . 3
⊢ (¬
¬ (¬ 𝜑 ∨ 𝜓) ∨ (¬ (¬ 𝜑 ∨ 𝜓) ∨ ¬ (¬ 𝜓 ∨ 𝜑))) | 
| 11 |  | rblem5 1760 | . . 3
⊢ (¬
(¬ ¬ (¬ 𝜑 ∨
𝜓) ∨ (¬ (¬ 𝜑 ∨ 𝜓) ∨ ¬ (¬ 𝜓 ∨ 𝜑))) ∨ (¬ ¬ (¬ (¬ 𝜑 ∨ 𝜓) ∨ ¬ (¬ 𝜓 ∨ 𝜑)) ∨ (¬ 𝜑 ∨ 𝜓))) | 
| 12 | 10, 11 | anmp 1750 | . 2
⊢ (¬
¬ (¬ (¬ 𝜑 ∨
𝜓) ∨ ¬ (¬ 𝜓 ∨ 𝜑)) ∨ (¬ 𝜑 ∨ 𝜓)) | 
| 13 | 1, 12 | anmp 1750 | 1
⊢ (¬
𝜑 ∨ 𝜓) |