Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rb-bijust | Structured version Visualization version GIF version |
Description: Justification for rb-imdf 1757. (Contributed by Anthony Hart, 17-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rb-bijust | ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ (¬ (¬ 𝜑 ∨ 𝜓) ∨ ¬ (¬ 𝜓 ∨ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi1 216 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
2 | imor 852 | . . . 4 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) | |
3 | imor 852 | . . . . 5 ⊢ ((𝜓 → 𝜑) ↔ (¬ 𝜓 ∨ 𝜑)) | |
4 | 3 | notbii 323 | . . . 4 ⊢ (¬ (𝜓 → 𝜑) ↔ ¬ (¬ 𝜓 ∨ 𝜑)) |
5 | 2, 4 | imbi12i 354 | . . 3 ⊢ (((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) ↔ ((¬ 𝜑 ∨ 𝜓) → ¬ (¬ 𝜓 ∨ 𝜑))) |
6 | 5 | notbii 323 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) ↔ ¬ ((¬ 𝜑 ∨ 𝜓) → ¬ (¬ 𝜓 ∨ 𝜑))) |
7 | pm4.62 855 | . . 3 ⊢ (((¬ 𝜑 ∨ 𝜓) → ¬ (¬ 𝜓 ∨ 𝜑)) ↔ (¬ (¬ 𝜑 ∨ 𝜓) ∨ ¬ (¬ 𝜓 ∨ 𝜑))) | |
8 | 7 | notbii 323 | . 2 ⊢ (¬ ((¬ 𝜑 ∨ 𝜓) → ¬ (¬ 𝜓 ∨ 𝜑)) ↔ ¬ (¬ (¬ 𝜑 ∨ 𝜓) ∨ ¬ (¬ 𝜓 ∨ 𝜑))) |
9 | 1, 6, 8 | 3bitri 300 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ (¬ (¬ 𝜑 ∨ 𝜓) ∨ ¬ (¬ 𝜓 ∨ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-or 847 |
This theorem is referenced by: rb-imdf 1757 |
Copyright terms: Public domain | W3C validator |