MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  renicax Structured version   Visualization version   GIF version

Theorem renicax 1700
Description: A rederivation of nic-ax 1676 from lukshef-ax1 1697, proving that lukshef-ax1 1697 with nic-mp 1674 can be used as a complete axiomatization of propositional calculus. (Contributed by Anthony Hart, 31-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
renicax ((𝜑 ⊼ (𝜒𝜓)) ⊼ ((𝜏 ⊼ (𝜏𝜏)) ⊼ ((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃)))))

Proof of Theorem renicax
StepHypRef Expression
1 lukshefth1 1698 . . . 4 ((((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃))) ⊼ (𝜏 ⊼ (𝜏𝜏))) ⊼ (𝜑 ⊼ (𝜒𝜓)))
2 lukshefth2 1699 . . . 4 (((((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃))) ⊼ (𝜏 ⊼ (𝜏𝜏))) ⊼ (𝜑 ⊼ (𝜒𝜓))) ⊼ (((𝜑 ⊼ (𝜒𝜓)) ⊼ (((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃))) ⊼ (𝜏 ⊼ (𝜏𝜏)))) ⊼ ((𝜑 ⊼ (𝜒𝜓)) ⊼ (((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃))) ⊼ (𝜏 ⊼ (𝜏𝜏))))))
31, 2nic-mp 1674 . . 3 ((𝜑 ⊼ (𝜒𝜓)) ⊼ (((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃))) ⊼ (𝜏 ⊼ (𝜏𝜏))))
4 lukshefth2 1699 . . . 4 (((𝜏 ⊼ (𝜏𝜏)) ⊼ ((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃)))) ⊼ ((((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃))) ⊼ (𝜏 ⊼ (𝜏𝜏))) ⊼ (((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃))) ⊼ (𝜏 ⊼ (𝜏𝜏)))))
5 lukshef-ax1 1697 . . . 4 ((((𝜏 ⊼ (𝜏𝜏)) ⊼ ((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃)))) ⊼ ((((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃))) ⊼ (𝜏 ⊼ (𝜏𝜏))) ⊼ (((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃))) ⊼ (𝜏 ⊼ (𝜏𝜏))))) ⊼ (((𝜑 ⊼ (𝜒𝜓)) ⊼ ((𝜑 ⊼ (𝜒𝜓)) ⊼ (𝜑 ⊼ (𝜒𝜓)))) ⊼ (((𝜑 ⊼ (𝜒𝜓)) ⊼ (((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃))) ⊼ (𝜏 ⊼ (𝜏𝜏)))) ⊼ ((((𝜏 ⊼ (𝜏𝜏)) ⊼ ((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃)))) ⊼ (𝜑 ⊼ (𝜒𝜓))) ⊼ (((𝜏 ⊼ (𝜏𝜏)) ⊼ ((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃)))) ⊼ (𝜑 ⊼ (𝜒𝜓)))))))
64, 5nic-mp 1674 . . 3 (((𝜑 ⊼ (𝜒𝜓)) ⊼ (((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃))) ⊼ (𝜏 ⊼ (𝜏𝜏)))) ⊼ ((((𝜏 ⊼ (𝜏𝜏)) ⊼ ((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃)))) ⊼ (𝜑 ⊼ (𝜒𝜓))) ⊼ (((𝜏 ⊼ (𝜏𝜏)) ⊼ ((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃)))) ⊼ (𝜑 ⊼ (𝜒𝜓)))))
73, 6nic-mp 1674 . 2 (((𝜏 ⊼ (𝜏𝜏)) ⊼ ((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃)))) ⊼ (𝜑 ⊼ (𝜒𝜓)))
8 lukshefth2 1699 . 2 ((((𝜏 ⊼ (𝜏𝜏)) ⊼ ((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃)))) ⊼ (𝜑 ⊼ (𝜒𝜓))) ⊼ (((𝜑 ⊼ (𝜒𝜓)) ⊼ ((𝜏 ⊼ (𝜏𝜏)) ⊼ ((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃))))) ⊼ ((𝜑 ⊼ (𝜒𝜓)) ⊼ ((𝜏 ⊼ (𝜏𝜏)) ⊼ ((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃)))))))
97, 8nic-mp 1674 1 ((𝜑 ⊼ (𝜒𝜓)) ⊼ ((𝜏 ⊼ (𝜏𝜏)) ⊼ ((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃)))))
Colors of variables: wff setvar class
Syntax hints:  wnan 1486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-nan 1487
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator