| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcom4 | Structured version Visualization version GIF version | ||
| Description: Commutativity law for substitution. This theorem was incorrectly used as our previous version of pm11.07 2091 but may still be useful. (Contributed by Andrew Salmon, 17-Jun-2011.) (Proof shortened by Jim Kingdon, 22-Jan-2018.) |
| Ref | Expression |
|---|---|
| sbcom4 | ⊢ ([𝑤 / 𝑥][𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbv 2089 | . 2 ⊢ ([𝑤 / 𝑥]𝜑 ↔ 𝜑) | |
| 2 | sbv 2089 | . . 3 ⊢ ([𝑦 / 𝑧]𝜑 ↔ 𝜑) | |
| 3 | 2 | sbbii 2077 | . 2 ⊢ ([𝑤 / 𝑥][𝑦 / 𝑧]𝜑 ↔ [𝑤 / 𝑥]𝜑) |
| 4 | sbv 2089 | . . . 4 ⊢ ([𝑤 / 𝑧]𝜑 ↔ 𝜑) | |
| 5 | 4 | sbbii 2077 | . . 3 ⊢ ([𝑦 / 𝑥][𝑤 / 𝑧]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| 6 | sbv 2089 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) | |
| 7 | 5, 6 | bitri 275 | . 2 ⊢ ([𝑦 / 𝑥][𝑤 / 𝑧]𝜑 ↔ 𝜑) |
| 8 | 1, 3, 7 | 3bitr4i 303 | 1 ⊢ ([𝑤 / 𝑥][𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-sb 2066 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |