|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sbcom4 | Structured version Visualization version GIF version | ||
| Description: Commutativity law for substitution. This theorem was incorrectly used as our previous version of pm11.07 2089 but may still be useful. (Contributed by Andrew Salmon, 17-Jun-2011.) (Proof shortened by Jim Kingdon, 22-Jan-2018.) | 
| Ref | Expression | 
|---|---|
| sbcom4 | ⊢ ([𝑤 / 𝑥][𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbv 2087 | . 2 ⊢ ([𝑤 / 𝑥]𝜑 ↔ 𝜑) | |
| 2 | sbv 2087 | . . 3 ⊢ ([𝑦 / 𝑧]𝜑 ↔ 𝜑) | |
| 3 | 2 | sbbii 2075 | . 2 ⊢ ([𝑤 / 𝑥][𝑦 / 𝑧]𝜑 ↔ [𝑤 / 𝑥]𝜑) | 
| 4 | sbv 2087 | . . . 4 ⊢ ([𝑤 / 𝑧]𝜑 ↔ 𝜑) | |
| 5 | 4 | sbbii 2075 | . . 3 ⊢ ([𝑦 / 𝑥][𝑤 / 𝑧]𝜑 ↔ [𝑦 / 𝑥]𝜑) | 
| 6 | sbv 2087 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) | |
| 7 | 5, 6 | bitri 275 | . 2 ⊢ ([𝑦 / 𝑥][𝑤 / 𝑧]𝜑 ↔ 𝜑) | 
| 8 | 1, 3, 7 | 3bitr4i 303 | 1 ⊢ ([𝑤 / 𝑥][𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 [wsb 2063 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 | 
| This theorem depends on definitions: df-bi 207 df-ex 1779 df-sb 2064 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |