Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcom4 | Structured version Visualization version GIF version |
Description: Commutativity law for substitution. This theorem was incorrectly used as our previous version of pm11.07 2094 but may still be useful. (Contributed by Andrew Salmon, 17-Jun-2011.) (Proof shortened by Jim Kingdon, 22-Jan-2018.) |
Ref | Expression |
---|---|
sbcom4 | ⊢ ([𝑤 / 𝑥][𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbv 2092 | . 2 ⊢ ([𝑤 / 𝑥]𝜑 ↔ 𝜑) | |
2 | sbv 2092 | . . 3 ⊢ ([𝑦 / 𝑧]𝜑 ↔ 𝜑) | |
3 | 2 | sbbii 2080 | . 2 ⊢ ([𝑤 / 𝑥][𝑦 / 𝑧]𝜑 ↔ [𝑤 / 𝑥]𝜑) |
4 | sbv 2092 | . . . 4 ⊢ ([𝑤 / 𝑧]𝜑 ↔ 𝜑) | |
5 | 4 | sbbii 2080 | . . 3 ⊢ ([𝑦 / 𝑥][𝑤 / 𝑧]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
6 | sbv 2092 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) | |
7 | 5, 6 | bitri 274 | . 2 ⊢ ([𝑦 / 𝑥][𝑤 / 𝑧]𝜑 ↔ 𝜑) |
8 | 1, 3, 7 | 3bitr4i 302 | 1 ⊢ ([𝑤 / 𝑥][𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-sb 2069 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |