MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbv Structured version   Visualization version   GIF version

Theorem sbv 2089
Description: Substitution for a variable not occurring in a proposition. See sbf 2271 for a version without disjoint variable condition on 𝑥, 𝜑. If one adds a disjoint variable condition on 𝑥, 𝑡, then sbv 2089 can be proved directly by chaining equsv 2003 with sb6 2086. (Contributed by BJ, 22-Dec-2020.)
Assertion
Ref Expression
sbv ([𝑡 / 𝑥]𝜑𝜑)
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜑(𝑡)

Proof of Theorem sbv
StepHypRef Expression
1 spsbe 2083 . . 3 ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑)
2 ax5e 1912 . . 3 (∃𝑥𝜑𝜑)
31, 2syl 17 . 2 ([𝑡 / 𝑥]𝜑𝜑)
4 ax-5 1910 . . 3 (𝜑 → ∀𝑥𝜑)
5 stdpc4 2069 . . 3 (∀𝑥𝜑 → [𝑡 / 𝑥]𝜑)
64, 5syl 17 . 2 (𝜑 → [𝑡 / 𝑥]𝜑)
73, 6impbii 209 1 ([𝑡 / 𝑥]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538  wex 1779  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-sb 2066
This theorem is referenced by:  sbcom4  2090  sbievw  2094  sbievw2  2099  sbabel  2924  sbcg  3815  vn0  4296  eq0  4301  ab0w  4330  ab0orv  4334  eq0rdv  4358  rzal  4460  ralf0  4465  iuninc  32504  measiuns  34184  ballotlemodife  34466  xpab  35699  subsym1  36401  mptsnunlem  37312  ichv  47433  ichf  47434
  Copyright terms: Public domain W3C validator