![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbv | Structured version Visualization version GIF version |
Description: Substitution for a variable not occurring in a proposition. See sbf 2263 for a version without disjoint variable condition on 𝑥, 𝜑. If one adds a disjoint variable condition on 𝑥, 𝑡, then sbv 2092 can be proved directly by chaining equsv 2007 with sb6 2089. (Contributed by BJ, 22-Dec-2020.) |
Ref | Expression |
---|---|
sbv | ⊢ ([𝑡 / 𝑥]𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spsbe 2086 | . . 3 ⊢ ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑) | |
2 | ax5e 1916 | . . 3 ⊢ (∃𝑥𝜑 → 𝜑) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 → 𝜑) |
4 | ax-5 1914 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
5 | stdpc4 2072 | . . 3 ⊢ (∀𝑥𝜑 → [𝑡 / 𝑥]𝜑) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → [𝑡 / 𝑥]𝜑) |
7 | 3, 6 | impbii 208 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1540 ∃wex 1782 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-sb 2069 |
This theorem is referenced by: sbcom4 2093 sbievw2 2100 sbabel 2939 sbralie 3355 sbcg 3857 vn0 4339 eq0 4344 ab0w 4374 ab0OLD 4376 ab0orv 4379 eq0rdv 4405 rzal 4509 ralf0 4514 iuninc 31792 measiuns 33215 ballotlemodife 33496 xpab 34695 subsym1 35312 mptsnunlem 36219 ichv 46117 ichf 46118 |
Copyright terms: Public domain | W3C validator |