| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbv | Structured version Visualization version GIF version | ||
| Description: Substitution for a variable not occurring in a proposition. See sbf 2273 for a version without disjoint variable condition on 𝑥, 𝜑. If one adds a disjoint variable condition on 𝑥, 𝑡, then sbv 2091 can be proved directly by chaining equsv 2004 with sb6 2088. (Contributed by BJ, 22-Dec-2020.) |
| Ref | Expression |
|---|---|
| sbv | ⊢ ([𝑡 / 𝑥]𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbe 2085 | . . 3 ⊢ ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑) | |
| 2 | ax5e 1913 | . . 3 ⊢ (∃𝑥𝜑 → 𝜑) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 → 𝜑) |
| 4 | ax-5 1911 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 5 | stdpc4 2071 | . . 3 ⊢ (∀𝑥𝜑 → [𝑡 / 𝑥]𝜑) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → [𝑡 / 𝑥]𝜑) |
| 7 | 3, 6 | impbii 209 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 ∃wex 1780 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-sb 2068 |
| This theorem is referenced by: sbcom4 2092 sbievw 2096 sbievw2 2101 sbabel 2927 sbcg 3809 ab0w 4326 ralf0 4461 iuninc 32540 measiuns 34230 ballotlemodife 34511 xpab 35770 subsym1 36469 mptsnunlem 37380 ichv 47488 ichf 47489 |
| Copyright terms: Public domain | W3C validator |