![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbv | Structured version Visualization version GIF version |
Description: Substitution for a variable not occurring in a proposition. See sbf 2272 for a version without disjoint variable condition on 𝑥, 𝜑. If one adds a disjoint variable condition on 𝑥, 𝑡, then sbv 2088 can be proved directly by chaining equsv 2002 with sb6 2085. (Contributed by BJ, 22-Dec-2020.) |
Ref | Expression |
---|---|
sbv | ⊢ ([𝑡 / 𝑥]𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spsbe 2082 | . . 3 ⊢ ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑) | |
2 | ax5e 1911 | . . 3 ⊢ (∃𝑥𝜑 → 𝜑) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 → 𝜑) |
4 | ax-5 1909 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
5 | stdpc4 2068 | . . 3 ⊢ (∀𝑥𝜑 → [𝑡 / 𝑥]𝜑) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → [𝑡 / 𝑥]𝜑) |
7 | 3, 6 | impbii 209 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1535 ∃wex 1777 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-sb 2065 |
This theorem is referenced by: sbcom4 2089 sbievw 2093 sbievw2 2098 sbabel 2944 sbcg 3883 vn0 4368 eq0 4373 ab0w 4401 ab0OLD 4403 ab0orv 4406 eq0rdv 4430 rzal 4532 ralf0 4537 iuninc 32583 measiuns 34181 ballotlemodife 34462 xpab 35688 subsym1 36393 mptsnunlem 37304 ichv 47323 ichf 47324 |
Copyright terms: Public domain | W3C validator |