| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbv | Structured version Visualization version GIF version | ||
| Description: Substitution for a variable not occurring in a proposition. See sbf 2272 for a version without disjoint variable condition on 𝑥, 𝜑. If one adds a disjoint variable condition on 𝑥, 𝑡, then sbv 2089 can be proved directly by chaining equsv 2003 with sb6 2086. (Contributed by BJ, 22-Dec-2020.) |
| Ref | Expression |
|---|---|
| sbv | ⊢ ([𝑡 / 𝑥]𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbe 2083 | . . 3 ⊢ ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑) | |
| 2 | ax5e 1912 | . . 3 ⊢ (∃𝑥𝜑 → 𝜑) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 → 𝜑) |
| 4 | ax-5 1910 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 5 | stdpc4 2069 | . . 3 ⊢ (∀𝑥𝜑 → [𝑡 / 𝑥]𝜑) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → [𝑡 / 𝑥]𝜑) |
| 7 | 3, 6 | impbii 209 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 ∃wex 1779 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-sb 2066 |
| This theorem is referenced by: sbcom4 2090 sbievw 2094 sbievw2 2099 sbabel 2932 sbcg 3843 vn0 4325 eq0 4330 ab0w 4359 ab0orv 4363 eq0rdv 4387 rzal 4489 ralf0 4494 iuninc 32546 measiuns 34253 ballotlemodife 34535 xpab 35748 subsym1 36450 mptsnunlem 37361 ichv 47430 ichf 47431 |
| Copyright terms: Public domain | W3C validator |