Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbv | Structured version Visualization version GIF version |
Description: Substitution for a variable not occurring in a proposition. See sbf 2266 for a version without disjoint variable condition on 𝑥, 𝜑. If one adds a disjoint variable condition on 𝑥, 𝑡, then sbv 2092 can be proved directly by chaining equsv 2007 with sb6 2089. (Contributed by BJ, 22-Dec-2020.) |
Ref | Expression |
---|---|
sbv | ⊢ ([𝑡 / 𝑥]𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spsbe 2086 | . . 3 ⊢ ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑) | |
2 | ax5e 1916 | . . 3 ⊢ (∃𝑥𝜑 → 𝜑) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 → 𝜑) |
4 | ax-5 1914 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
5 | stdpc4 2072 | . . 3 ⊢ (∀𝑥𝜑 → [𝑡 / 𝑥]𝜑) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → [𝑡 / 𝑥]𝜑) |
7 | 3, 6 | impbii 208 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 ∃wex 1783 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-sb 2069 |
This theorem is referenced by: sbcom4 2093 sbievw2 2101 sbabel 2940 sbcg 3791 vn0 4269 eq0 4274 ab0w 4304 ab0OLD 4306 ab0orv 4309 eq0rdv 4335 rzal 4436 ralf0 4441 iuninc 30801 measiuns 32085 ballotlemodife 32364 xpab 33579 mptsnunlem 35436 ichv 44789 ichf 44790 |
Copyright terms: Public domain | W3C validator |