| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbv | Structured version Visualization version GIF version | ||
| Description: Substitution for a variable not occurring in a proposition. See sbf 2271 for a version without disjoint variable condition on 𝑥, 𝜑. If one adds a disjoint variable condition on 𝑥, 𝑡, then sbv 2089 can be proved directly by chaining equsv 2003 with sb6 2086. (Contributed by BJ, 22-Dec-2020.) |
| Ref | Expression |
|---|---|
| sbv | ⊢ ([𝑡 / 𝑥]𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbe 2083 | . . 3 ⊢ ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑) | |
| 2 | ax5e 1912 | . . 3 ⊢ (∃𝑥𝜑 → 𝜑) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 → 𝜑) |
| 4 | ax-5 1910 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 5 | stdpc4 2069 | . . 3 ⊢ (∀𝑥𝜑 → [𝑡 / 𝑥]𝜑) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → [𝑡 / 𝑥]𝜑) |
| 7 | 3, 6 | impbii 209 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 ∃wex 1779 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-sb 2066 |
| This theorem is referenced by: sbcom4 2090 sbievw 2094 sbievw2 2099 sbabel 2924 sbcg 3823 vn0 4304 eq0 4309 ab0w 4338 ab0orv 4342 eq0rdv 4366 rzal 4468 ralf0 4473 iuninc 32462 measiuns 34180 ballotlemodife 34462 xpab 35686 subsym1 36388 mptsnunlem 37299 ichv 47423 ichf 47424 |
| Copyright terms: Public domain | W3C validator |