MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbv Structured version   Visualization version   GIF version

Theorem sbv 2089
Description: Substitution for a variable not occurring in a proposition. See sbf 2271 for a version without disjoint variable condition on 𝑥, 𝜑. If one adds a disjoint variable condition on 𝑥, 𝑡, then sbv 2089 can be proved directly by chaining equsv 2003 with sb6 2086. (Contributed by BJ, 22-Dec-2020.)
Assertion
Ref Expression
sbv ([𝑡 / 𝑥]𝜑𝜑)
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜑(𝑡)

Proof of Theorem sbv
StepHypRef Expression
1 spsbe 2083 . . 3 ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑)
2 ax5e 1912 . . 3 (∃𝑥𝜑𝜑)
31, 2syl 17 . 2 ([𝑡 / 𝑥]𝜑𝜑)
4 ax-5 1910 . . 3 (𝜑 → ∀𝑥𝜑)
5 stdpc4 2069 . . 3 (∀𝑥𝜑 → [𝑡 / 𝑥]𝜑)
64, 5syl 17 . 2 (𝜑 → [𝑡 / 𝑥]𝜑)
73, 6impbii 209 1 ([𝑡 / 𝑥]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538  wex 1779  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-sb 2066
This theorem is referenced by:  sbcom4  2090  sbievw  2094  sbievw2  2099  sbabel  2925  sbcg  3829  vn0  4311  eq0  4316  ab0w  4345  ab0orv  4349  eq0rdv  4373  rzal  4475  ralf0  4480  iuninc  32496  measiuns  34214  ballotlemodife  34496  xpab  35720  subsym1  36422  mptsnunlem  37333  ichv  47454  ichf  47455
  Copyright terms: Public domain W3C validator