MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbv Structured version   Visualization version   GIF version

Theorem sbv 2092
Description: Substitution for a variable not occurring in a proposition. See sbf 2263 for a version without disjoint variable condition on 𝑥, 𝜑. If one adds a disjoint variable condition on 𝑥, 𝑡, then sbv 2092 can be proved directly by chaining equsv 2007 with sb6 2089. (Contributed by BJ, 22-Dec-2020.)
Assertion
Ref Expression
sbv ([𝑡 / 𝑥]𝜑𝜑)
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜑(𝑡)

Proof of Theorem sbv
StepHypRef Expression
1 spsbe 2086 . . 3 ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑)
2 ax5e 1916 . . 3 (∃𝑥𝜑𝜑)
31, 2syl 17 . 2 ([𝑡 / 𝑥]𝜑𝜑)
4 ax-5 1914 . . 3 (𝜑 → ∀𝑥𝜑)
5 stdpc4 2072 . . 3 (∀𝑥𝜑 → [𝑡 / 𝑥]𝜑)
64, 5syl 17 . 2 (𝜑 → [𝑡 / 𝑥]𝜑)
73, 6impbii 208 1 ([𝑡 / 𝑥]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1540  wex 1782  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-sb 2069
This theorem is referenced by:  sbcom4  2093  sbievw2  2100  sbabel  2939  sbralie  3355  sbcg  3857  vn0  4339  eq0  4344  ab0w  4374  ab0OLD  4376  ab0orv  4379  eq0rdv  4405  rzal  4509  ralf0  4514  iuninc  31792  measiuns  33215  ballotlemodife  33496  xpab  34695  subsym1  35312  mptsnunlem  36219  ichv  46117  ichf  46118
  Copyright terms: Public domain W3C validator