![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbv | Structured version Visualization version GIF version |
Description: Substitution for a variable not occurring in a proposition. See sbf 2269 for a version without disjoint variable condition on 𝑥, 𝜑. If one adds a disjoint variable condition on 𝑥, 𝑡, then sbv 2086 can be proved directly by chaining equsv 2000 with sb6 2083. (Contributed by BJ, 22-Dec-2020.) |
Ref | Expression |
---|---|
sbv | ⊢ ([𝑡 / 𝑥]𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spsbe 2080 | . . 3 ⊢ ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑) | |
2 | ax5e 1910 | . . 3 ⊢ (∃𝑥𝜑 → 𝜑) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 → 𝜑) |
4 | ax-5 1908 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
5 | stdpc4 2066 | . . 3 ⊢ (∀𝑥𝜑 → [𝑡 / 𝑥]𝜑) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → [𝑡 / 𝑥]𝜑) |
7 | 3, 6 | impbii 209 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1535 ∃wex 1776 [wsb 2062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 |
This theorem depends on definitions: df-bi 207 df-ex 1777 df-sb 2063 |
This theorem is referenced by: sbcom4 2087 sbievw 2091 sbievw2 2096 sbabel 2936 sbcg 3870 vn0 4351 eq0 4356 ab0w 4385 ab0orv 4389 eq0rdv 4413 rzal 4515 ralf0 4520 iuninc 32581 measiuns 34198 ballotlemodife 34479 xpab 35706 subsym1 36410 mptsnunlem 37321 ichv 47374 ichf 47375 |
Copyright terms: Public domain | W3C validator |