| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbbii | Structured version Visualization version GIF version | ||
| Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| sbbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sbbii | ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | 2 | sbimi 2075 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
| 4 | 1 | biimpri 228 | . . 3 ⊢ (𝜓 → 𝜑) |
| 5 | 4 | sbimi 2075 | . 2 ⊢ ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜑) |
| 6 | 3, 5 | impbii 209 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-sb 2066 |
| This theorem is referenced by: 2sbbii 2078 sb3an 2082 sbcom4 2090 sbievw2 2099 cbvsbv 2101 sbco4lemOLD 2175 sbco4OLD 2176 sbcovOLD 2258 sbex 2281 sbor 2306 sbbi 2307 sbnf 2311 sbnfOLD 2312 sbco 2505 sbidm 2508 sbco2d 2510 sbco3 2511 sb7f 2523 sbmo 2607 cbvab 2801 clelsb1fw 2895 clelsb1f 2896 sbabel 2924 sbralie 3317 sbralieALT 3318 sbralieOLD 3319 sbccow 3767 sbcco 3770 exss 5410 inopab 5776 difopab 5777 xpab 35701 bj-sbeq 36877 bj-snsetex 36939 2uasbanh 44538 2uasbanhVD 44887 2reu8i 47101 ichv 47437 ichf 47438 ichid 47439 ichcircshi 47442 ichan 47443 ichn 47444 ichbi12i 47448 icheq 47450 ichal 47454 ichnreuop 47460 ichreuopeq 47461 |
| Copyright terms: Public domain | W3C validator |