| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbbii | Structured version Visualization version GIF version | ||
| Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| sbbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sbbii | ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | 2 | sbimi 2074 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
| 4 | 1 | biimpri 228 | . . 3 ⊢ (𝜓 → 𝜑) |
| 5 | 4 | sbimi 2074 | . 2 ⊢ ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜑) |
| 6 | 3, 5 | impbii 209 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-sb 2065 |
| This theorem is referenced by: 2sbbii 2077 sb3an 2081 sbcom4 2089 sbievw2 2098 cbvsbv 2100 sbco4lemOLD 2174 sbco4OLD 2175 sbcovOLD 2257 sbex 2281 sbor 2307 sbbi 2308 sbnf 2312 sbnfOLD 2313 sbco 2511 sbidm 2514 sbco2d 2516 sbco3 2517 sb7f 2529 sbmo 2613 cbvab 2807 clelsb2OLD 2863 clelsb1fw 2902 clelsb1f 2903 sbabel 2931 sbralie 3337 sbralieALT 3338 sbccow 3788 sbcco 3791 exss 5438 inopab 5808 difopab 5809 isarep1OLD 6627 xpab 35743 bj-sbeq 36919 bj-snsetex 36981 2uasbanh 44586 2uasbanhVD 44935 2reu8i 47142 ichv 47463 ichf 47464 ichid 47465 ichcircshi 47468 ichan 47469 ichn 47470 ichbi12i 47474 icheq 47476 ichal 47480 ichnreuop 47486 ichreuopeq 47487 |
| Copyright terms: Public domain | W3C validator |