| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbbii | Structured version Visualization version GIF version | ||
| Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| sbbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sbbii | ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | 2 | sbimi 2075 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
| 4 | 1 | biimpri 228 | . . 3 ⊢ (𝜓 → 𝜑) |
| 5 | 4 | sbimi 2075 | . 2 ⊢ ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜑) |
| 6 | 3, 5 | impbii 209 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-sb 2066 |
| This theorem is referenced by: 2sbbii 2078 sb3an 2082 sbcom4 2090 sbievw2 2099 cbvsbv 2101 sbco4lemOLD 2175 sbco4OLD 2176 sbcovOLD 2258 sbex 2281 sbor 2306 sbbi 2307 sbnf 2311 sbnfOLD 2312 sbco 2506 sbidm 2509 sbco2d 2511 sbco3 2512 sb7f 2524 sbmo 2608 cbvab 2802 clelsb1fw 2896 clelsb1f 2897 sbabel 2925 sbralie 3328 sbralieALT 3329 sbralieOLD 3330 sbccow 3779 sbcco 3782 exss 5426 inopab 5795 difopab 5796 isarep1OLD 6610 xpab 35720 bj-sbeq 36896 bj-snsetex 36958 2uasbanh 44558 2uasbanhVD 44907 2reu8i 47118 ichv 47454 ichf 47455 ichid 47456 ichcircshi 47459 ichan 47460 ichn 47461 ichbi12i 47465 icheq 47467 ichal 47471 ichnreuop 47477 ichreuopeq 47478 |
| Copyright terms: Public domain | W3C validator |