![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbbii | Structured version Visualization version GIF version |
Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
sbbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
sbbii | ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpi 216 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | 2 | sbimi 2074 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
4 | 1 | biimpri 228 | . . 3 ⊢ (𝜓 → 𝜑) |
5 | 4 | sbimi 2074 | . 2 ⊢ ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜑) |
6 | 3, 5 | impbii 209 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-sb 2065 |
This theorem is referenced by: 2sbbii 2077 sb3an 2081 sbcom4 2089 sbievw2 2098 cbvsbv 2100 sbco4lemOLD 2175 sbco4OLD 2176 sbcovOLD 2258 sbco4lemOLDOLD 2282 sbex 2285 sbor 2311 sbbi 2312 sbnf 2316 sbnfOLD 2317 sbco 2515 sbidm 2518 sbco2d 2520 sbco3 2521 sb7f 2533 sbmo 2617 cbvab 2817 clelsb2OLD 2873 clelsb1fw 2912 clelsb1f 2913 sbabel 2944 sbabelOLD 2945 sbralie 3366 sbralieALT 3367 sbccow 3827 sbcco 3830 exss 5483 inopab 5853 difopab 5854 isarep1OLD 6668 xpab 35688 bj-sbeq 36867 bj-snsetex 36929 2uasbanh 44532 2uasbanhVD 44882 2reu8i 47028 ichv 47323 ichf 47324 ichid 47325 ichcircshi 47328 ichan 47329 ichn 47330 ichbi12i 47334 icheq 47336 ichal 47340 ichnreuop 47346 ichreuopeq 47347 |
Copyright terms: Public domain | W3C validator |