| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbbii | Structured version Visualization version GIF version | ||
| Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| sbbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sbbii | ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | 2 | sbimi 2075 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
| 4 | 1 | biimpri 228 | . . 3 ⊢ (𝜓 → 𝜑) |
| 5 | 4 | sbimi 2075 | . 2 ⊢ ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜑) |
| 6 | 3, 5 | impbii 209 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-sb 2066 |
| This theorem is referenced by: 2sbbii 2078 sb3an 2082 sbcom4 2090 sbievw2 2099 cbvsbv 2101 sbco4lemOLD 2175 sbco4OLD 2176 sbcovOLD 2258 sbex 2281 sbor 2306 sbbi 2307 sbnf 2311 sbnfOLD 2312 sbco 2505 sbidm 2508 sbco2d 2510 sbco3 2511 sb7f 2523 sbmo 2607 cbvab 2801 clelsb1fw 2895 clelsb1f 2896 sbabel 2924 sbralie 3326 sbralieALT 3327 sbralieOLD 3328 sbccow 3776 sbcco 3779 exss 5423 inopab 5792 difopab 5793 isarep1OLD 6607 xpab 35713 bj-sbeq 36889 bj-snsetex 36951 2uasbanh 44551 2uasbanhVD 44900 2reu8i 47114 ichv 47450 ichf 47451 ichid 47452 ichcircshi 47455 ichan 47456 ichn 47457 ichbi12i 47461 icheq 47463 ichal 47467 ichnreuop 47473 ichreuopeq 47474 |
| Copyright terms: Public domain | W3C validator |