Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbbii | Structured version Visualization version GIF version |
Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
sbbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
sbbii | ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | 2 | sbimi 2077 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
4 | 1 | biimpri 227 | . . 3 ⊢ (𝜓 → 𝜑) |
5 | 4 | sbimi 2077 | . 2 ⊢ ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜑) |
6 | 3, 5 | impbii 208 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-sb 2068 |
This theorem is referenced by: 2sbbii 2080 sb3an 2084 sbcom4 2092 sbievw2 2099 sbcov 2249 sbco4lem 2273 sbco4lemOLD 2274 sbco4 2275 sbex 2278 sbor 2304 sbbi 2305 sbco 2511 sbidm 2514 sbco2d 2516 sbco3 2517 sb7f 2530 sbmo 2616 cbvabv 2811 cbvabwOLD 2813 cbvab 2814 clelsb2OLD 2868 clelsb1fw 2911 clelsb1f 2912 sbabel 2941 sbabelOLD 2942 sbralie 3404 sbccow 3739 sbcco 3742 exss 5377 inopab 5733 isarep1 6515 xpab 33663 bj-sbnf 35010 bj-sbeq 35072 bj-snsetex 35139 2uasbanh 42140 2uasbanhVD 42490 2reu8i 44561 ichv 44857 ichf 44858 ichid 44859 ichcircshi 44862 ichan 44863 ichn 44864 ichbi12i 44868 icheq 44870 ichal 44874 ichnreuop 44880 ichreuopeq 44881 |
Copyright terms: Public domain | W3C validator |