Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbbii | Structured version Visualization version GIF version |
Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
sbbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
sbbii | ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | 2 | sbimi 2077 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
4 | 1 | biimpri 227 | . . 3 ⊢ (𝜓 → 𝜑) |
5 | 4 | sbimi 2077 | . 2 ⊢ ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜑) |
6 | 3, 5 | impbii 208 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-sb 2068 |
This theorem is referenced by: 2sbbii 2080 sb3an 2084 sbcom4 2092 sbievw2 2099 sbcov 2249 sbco4lem 2273 sbco4lemOLD 2274 sbco4 2275 sbex 2278 sbor 2304 sbbi 2305 sbco 2511 sbidm 2514 sbco2d 2516 sbco3 2517 sb7f 2530 sbmo 2616 cbvabv 2811 cbvabwOLD 2813 cbvab 2814 clelsb2OLD 2868 clelsb1fw 2911 clelsb1f 2912 sbabel 2941 sbabelOLD 2942 sbralie 3406 sbccow 3739 sbcco 3742 exss 5378 inopab 5739 isarep1 6522 xpab 33677 bj-sbnf 35024 bj-sbeq 35086 bj-snsetex 35153 2uasbanh 42181 2uasbanhVD 42531 2reu8i 44605 ichv 44901 ichf 44902 ichid 44903 ichcircshi 44906 ichan 44907 ichn 44908 ichbi12i 44912 icheq 44914 ichal 44918 ichnreuop 44924 ichreuopeq 44925 |
Copyright terms: Public domain | W3C validator |