| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbbii | Structured version Visualization version GIF version | ||
| Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| sbbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sbbii | ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | 2 | sbimi 2079 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
| 4 | 1 | biimpri 228 | . . 3 ⊢ (𝜓 → 𝜑) |
| 5 | 4 | sbimi 2079 | . 2 ⊢ ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜑) |
| 6 | 3, 5 | impbii 209 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 |
| This theorem is referenced by: 2sbbii 2082 sb3an 2086 sbcom4 2094 sbievw2 2103 cbvsbv 2105 sbco4lemOLD 2179 sbco4OLD 2180 sbcovOLD 2262 sbex 2285 sbor 2310 sbbi 2311 sbnf 2315 sbnfOLD 2316 sbco 2509 sbidm 2512 sbco2d 2514 sbco3 2515 sb7f 2527 sbmo 2611 cbvab 2805 clelsb1fw 2899 clelsb1f 2900 sbabel 2928 sbralie 3319 sbralieALT 3320 sbralieOLD 3321 sbccow 3760 sbcco 3763 exss 5406 inopab 5773 difopab 5774 xpab 35791 bj-sbeq 36966 bj-snsetex 37028 2uasbanh 44679 2uasbanhVD 45028 2reu8i 47238 ichv 47574 ichf 47575 ichid 47576 ichcircshi 47579 ichan 47580 ichn 47581 ichbi12i 47585 icheq 47587 ichal 47591 ichnreuop 47597 ichreuopeq 47598 |
| Copyright terms: Public domain | W3C validator |