Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbbii | Structured version Visualization version GIF version |
Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
sbbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
sbbii | ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | 2 | sbimi 2078 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
4 | 1 | biimpri 227 | . . 3 ⊢ (𝜓 → 𝜑) |
5 | 4 | sbimi 2078 | . 2 ⊢ ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜑) |
6 | 3, 5 | impbii 208 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-sb 2069 |
This theorem is referenced by: 2sbbii 2081 sb3an 2085 sbcom4 2093 sbievw2 2101 sbcov 2252 sbco4lem 2276 sbco4lemOLD 2277 sbco4 2278 sbex 2281 sbor 2307 sbbi 2308 sbco 2511 sbidm 2514 sbco2d 2516 sbco3 2517 sb7f 2530 sbmo 2616 cbvabv 2812 cbvabwOLD 2814 cbvab 2815 clelsb2 2867 clelsb1fw 2910 clelsb1f 2911 sbabel 2940 sbabelOLD 2941 sbralie 3395 sbccow 3734 sbcco 3737 exss 5372 inopab 5728 isarep1 6506 xpab 33579 bj-sbnf 34951 bj-sbeq 35013 bj-snsetex 35080 2uasbanh 42070 2uasbanhVD 42420 2reu8i 44492 ichv 44789 ichf 44790 ichid 44791 ichcircshi 44794 ichan 44795 ichn 44796 ichbi12i 44800 icheq 44802 ichal 44806 ichnreuop 44812 ichreuopeq 44813 |
Copyright terms: Public domain | W3C validator |