| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbbii | Structured version Visualization version GIF version | ||
| Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| sbbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sbbii | ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | 2 | sbimi 2077 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
| 4 | 1 | biimpri 228 | . . 3 ⊢ (𝜓 → 𝜑) |
| 5 | 4 | sbimi 2077 | . 2 ⊢ ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜑) |
| 6 | 3, 5 | impbii 209 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-sb 2068 |
| This theorem is referenced by: 2sbbii 2080 sb3an 2084 sbcom4 2092 sbievw2 2101 cbvsbv 2103 sbco4lemOLD 2177 sbco4OLD 2178 sbcovOLD 2260 sbex 2283 sbor 2308 sbbi 2309 sbnf 2313 sbnfOLD 2314 sbco 2507 sbidm 2510 sbco2d 2512 sbco3 2513 sb7f 2525 sbmo 2609 cbvab 2803 clelsb1fw 2898 clelsb1f 2899 sbabel 2927 sbralie 3318 sbralieALT 3319 sbralieOLD 3320 sbccow 3764 sbcco 3767 exss 5403 inopab 5769 difopab 5770 xpab 35768 bj-sbeq 36941 bj-snsetex 37003 2uasbanh 44600 2uasbanhVD 44949 2reu8i 47150 ichv 47486 ichf 47487 ichid 47488 ichcircshi 47491 ichan 47492 ichn 47493 ichbi12i 47497 icheq 47499 ichal 47503 ichnreuop 47509 ichreuopeq 47510 |
| Copyright terms: Public domain | W3C validator |