![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbbii | Structured version Visualization version GIF version |
Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
sbbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
sbbii | ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpi 216 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | 2 | sbimi 2071 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
4 | 1 | biimpri 228 | . . 3 ⊢ (𝜓 → 𝜑) |
5 | 4 | sbimi 2071 | . 2 ⊢ ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜑) |
6 | 3, 5 | impbii 209 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 [wsb 2061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 |
This theorem depends on definitions: df-bi 207 df-sb 2062 |
This theorem is referenced by: 2sbbii 2074 sb3an 2078 sbcom4 2086 sbievw2 2095 cbvsbv 2097 sbco4lemOLD 2171 sbco4OLD 2172 sbcovOLD 2254 sbco4lemOLDOLD 2276 sbex 2279 sbor 2305 sbbi 2306 sbnf 2310 sbnfOLD 2311 sbco 2509 sbidm 2512 sbco2d 2514 sbco3 2515 sb7f 2527 sbmo 2611 cbvab 2811 clelsb2OLD 2867 clelsb1fw 2906 clelsb1f 2907 sbabel 2935 sbabelOLD 2936 sbralie 3355 sbralieALT 3356 sbccow 3813 sbcco 3816 exss 5473 inopab 5841 difopab 5842 isarep1OLD 6657 xpab 35705 bj-sbeq 36883 bj-snsetex 36945 2uasbanh 44558 2uasbanhVD 44908 2reu8i 47062 ichv 47373 ichf 47374 ichid 47375 ichcircshi 47378 ichan 47379 ichn 47380 ichbi12i 47384 icheq 47386 ichal 47390 ichnreuop 47396 ichreuopeq 47397 |
Copyright terms: Public domain | W3C validator |