MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbtALT Structured version   Visualization version   GIF version

Theorem sbtALT 2067
Description: Alternate proof of sbt 2064, shorter but using ax-4 1803 and ax-5 1904. (Contributed by NM, 21-Jan-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
sbtALT.1 𝜑
Assertion
Ref Expression
sbtALT [𝑦 / 𝑥]𝜑

Proof of Theorem sbtALT
StepHypRef Expression
1 stdpc4 2066 . 2 (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)
2 sbtALT.1 . 2 𝜑
31, 2mpg 1791 1 [𝑦 / 𝑥]𝜑
Colors of variables: wff setvar class
Syntax hints:  [wsb 2062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904
This theorem depends on definitions:  df-bi 208  df-sb 2063
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator