Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbtT Structured version   Visualization version   GIF version

Theorem sbtT 42400
Description: A substitution into a theorem remains true. sbt 2067 with the existence of no virtual hypotheses for the hypothesis expressed as the empty virtual hypothesis collection. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
sbtT.1 (⊤ → 𝜑)
Assertion
Ref Expression
sbtT [𝑦 / 𝑥]𝜑

Proof of Theorem sbtT
StepHypRef Expression
1 sbtT.1 . . 3 (⊤ → 𝜑)
21mptru 1546 . 2 𝜑
32sbt 2067 1 [𝑦 / 𝑥]𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wtru 1540  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795
This theorem depends on definitions:  df-bi 206  df-tru 1542  df-sb 2066
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator