| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > jaoded | Structured version Visualization version GIF version | ||
| Description: Deduction form of jao 962. Disjunction of antecedents. (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| jaoded.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jaoded.2 | ⊢ (𝜃 → (𝜏 → 𝜒)) |
| jaoded.3 | ⊢ (𝜂 → (𝜓 ∨ 𝜏)) |
| Ref | Expression |
|---|---|
| jaoded | ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜂) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaoded.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | jaoded.2 | . 2 ⊢ (𝜃 → (𝜏 → 𝜒)) | |
| 3 | jaoded.3 | . 2 ⊢ (𝜂 → (𝜓 ∨ 𝜏)) | |
| 4 | jao 962 | . . 3 ⊢ ((𝜓 → 𝜒) → ((𝜏 → 𝜒) → ((𝜓 ∨ 𝜏) → 𝜒))) | |
| 5 | 4 | 3imp 1110 | . 2 ⊢ (((𝜓 → 𝜒) ∧ (𝜏 → 𝜒) ∧ (𝜓 ∨ 𝜏)) → 𝜒) |
| 6 | 1, 2, 3, 5 | syl3an 1160 | 1 ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜂) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 |
| This theorem is referenced by: suctrALT3 44889 |
| Copyright terms: Public domain | W3C validator |