Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > jaoded | Structured version Visualization version GIF version |
Description: Deduction form of jao 957. Disjunction of antecedents. (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
jaoded.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jaoded.2 | ⊢ (𝜃 → (𝜏 → 𝜒)) |
jaoded.3 | ⊢ (𝜂 → (𝜓 ∨ 𝜏)) |
Ref | Expression |
---|---|
jaoded | ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜂) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaoded.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | jaoded.2 | . 2 ⊢ (𝜃 → (𝜏 → 𝜒)) | |
3 | jaoded.3 | . 2 ⊢ (𝜂 → (𝜓 ∨ 𝜏)) | |
4 | jao 957 | . . 3 ⊢ ((𝜓 → 𝜒) → ((𝜏 → 𝜒) → ((𝜓 ∨ 𝜏) → 𝜒))) | |
5 | 4 | 3imp 1109 | . 2 ⊢ (((𝜓 → 𝜒) ∧ (𝜏 → 𝜒) ∧ (𝜓 ∨ 𝜏)) → 𝜒) |
6 | 1, 2, 3, 5 | syl3an 1158 | 1 ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜂) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 |
This theorem is referenced by: suctrALT3 42433 |
Copyright terms: Public domain | W3C validator |