MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbtru Structured version   Visualization version   GIF version

Theorem sbtru 2070
Description: The result of substituting in the truth constant "true" is true. (Contributed by BJ, 2-Sep-2023.)
Assertion
Ref Expression
sbtru [𝑦 / 𝑥]⊤

Proof of Theorem sbtru
StepHypRef Expression
1 tru 1543 . 2
21sbt 2069 1 [𝑦 / 𝑥]⊤
Colors of variables: wff setvar class
Syntax hints:  wtru 1540  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798
This theorem depends on definitions:  df-bi 206  df-tru 1542  df-sb 2068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator