MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp-9l Structured version   Visualization version   GIF version

Theorem simp-9l 790
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.)
Assertion
Ref Expression
simp-9l ((((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → 𝜑)

Proof of Theorem simp-9l
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
21ad9antr 739 1 ((((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  restutopopn  23496  lbsdiflsp0  32005
  Copyright terms: Public domain W3C validator