Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad9antr | Structured version Visualization version GIF version |
Description: Deduction adding 9 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad9antr | ⊢ ((((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
3 | 2 | ad8antr 736 | 1 ⊢ ((((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: ad10antr 740 ad10antlr 741 simp-9l 789 midexlem 26957 footexALT 26983 footex 26986 f1otrg 27136 2ndresdju 30887 rhmimaidl 31511 isprmidlc 31525 lbsdiflsp0 31609 dimkerim 31610 |
Copyright terms: Public domain | W3C validator |