MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad9antr Structured version   Visualization version   GIF version

Theorem ad9antr 739
Description: Deduction adding 9 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.)
Hypothesis
Ref Expression
ad2ant.1 (𝜑𝜓)
Assertion
Ref Expression
ad9antr ((((((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜓)

Proof of Theorem ad9antr
StepHypRef Expression
1 ad2ant.1 . . 3 (𝜑𝜓)
21adantr 481 . 2 ((𝜑𝜒) → 𝜓)
32ad8antr 737 1 ((((((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  ad10antr  741  ad10antlr  742  simp-9l  790  midexlem  27042  footexALT  27068  footex  27071  f1otrg  27221  2ndresdju  30973  rhmimaidl  31596  isprmidlc  31610  lbsdiflsp0  31694  dimkerim  31695
  Copyright terms: Public domain W3C validator