| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad9antr | Structured version Visualization version GIF version | ||
| Description: Deduction adding 9 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad9antr | ⊢ ((((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| 3 | 2 | ad8antr 740 | 1 ⊢ ((((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad10antr 744 ad10antlr 745 simp-9l 793 midexlem 28700 footexALT 28726 footex 28729 f1otrg 28879 2ndresdju 32659 rhmimaidl 33460 isprmidlc 33475 ssdifidlprm 33486 qsdrngi 33523 lbsdiflsp0 33677 dimkerim 33678 constrconj 33786 constrfin 33787 |
| Copyright terms: Public domain | W3C validator |