| Step | Hyp | Ref
| Expression |
| 1 | | elutop 24242 |
. . . 4
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑡 ∈ 𝑈 (𝑡 “ {𝑥}) ⊆ 𝐴))) |
| 2 | 1 | simprbda 498 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) → 𝐴 ⊆ 𝑋) |
| 3 | | restutop 24246 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((unifTop‘𝑈) ↾t 𝐴) ⊆ (unifTop‘(𝑈 ↾t (𝐴 × 𝐴)))) |
| 4 | 2, 3 | syldan 591 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) → ((unifTop‘𝑈) ↾t 𝐴) ⊆ (unifTop‘(𝑈 ↾t (𝐴 × 𝐴)))) |
| 5 | | trust 24238 |
. . . . . . . . 9
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑈 ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴)) |
| 6 | 2, 5 | syldan 591 |
. . . . . . . 8
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) → (𝑈 ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴)) |
| 7 | | elutop 24242 |
. . . . . . . 8
⊢ ((𝑈 ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴) → (𝑏 ∈ (unifTop‘(𝑈 ↾t (𝐴 × 𝐴))) ↔ (𝑏 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑏 ∃𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))(𝑢 “ {𝑥}) ⊆ 𝑏))) |
| 8 | 6, 7 | syl 17 |
. . . . . . 7
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) → (𝑏 ∈ (unifTop‘(𝑈 ↾t (𝐴 × 𝐴))) ↔ (𝑏 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑏 ∃𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))(𝑢 “ {𝑥}) ⊆ 𝑏))) |
| 9 | 8 | simprbda 498 |
. . . . . 6
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝑏 ⊆ 𝐴) |
| 10 | 2 | adantr 480 |
. . . . . 6
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝐴 ⊆ 𝑋) |
| 11 | 9, 10 | sstrd 3994 |
. . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝑏 ⊆ 𝑋) |
| 12 | | simp-9l 793 |
. . . . . . . . . . 11
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ∈
(unifTop‘𝑈)) ∧
𝑏 ∈
(unifTop‘(𝑈
↾t (𝐴
× 𝐴)))) ∧ 𝑥 ∈ 𝑏) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡 ∈ 𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → 𝑈 ∈ (UnifOn‘𝑋)) |
| 13 | | simplr 769 |
. . . . . . . . . . 11
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ∈
(unifTop‘𝑈)) ∧
𝑏 ∈
(unifTop‘(𝑈
↾t (𝐴
× 𝐴)))) ∧ 𝑥 ∈ 𝑏) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡 ∈ 𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → 𝑡 ∈ 𝑈) |
| 14 | | simp-4r 784 |
. . . . . . . . . . 11
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ∈
(unifTop‘𝑈)) ∧
𝑏 ∈
(unifTop‘(𝑈
↾t (𝐴
× 𝐴)))) ∧ 𝑥 ∈ 𝑏) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡 ∈ 𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → 𝑤 ∈ 𝑈) |
| 15 | | ustincl 24216 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑡 ∈ 𝑈 ∧ 𝑤 ∈ 𝑈) → (𝑡 ∩ 𝑤) ∈ 𝑈) |
| 16 | 12, 13, 14, 15 | syl3anc 1373 |
. . . . . . . . . 10
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ∈
(unifTop‘𝑈)) ∧
𝑏 ∈
(unifTop‘(𝑈
↾t (𝐴
× 𝐴)))) ∧ 𝑥 ∈ 𝑏) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡 ∈ 𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → (𝑡 ∩ 𝑤) ∈ 𝑈) |
| 17 | | inimass 6175 |
. . . . . . . . . . 11
⊢ ((𝑡 ∩ 𝑤) “ {𝑥}) ⊆ ((𝑡 “ {𝑥}) ∩ (𝑤 “ {𝑥})) |
| 18 | | ssrin 4242 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 “ {𝑥}) ⊆ 𝐴 → ((𝑡 “ {𝑥}) ∩ (𝑤 “ {𝑥})) ⊆ (𝐴 ∩ (𝑤 “ {𝑥}))) |
| 19 | 18 | adantl 481 |
. . . . . . . . . . . . 13
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ∈
(unifTop‘𝑈)) ∧
𝑏 ∈
(unifTop‘(𝑈
↾t (𝐴
× 𝐴)))) ∧ 𝑥 ∈ 𝑏) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡 ∈ 𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → ((𝑡 “ {𝑥}) ∩ (𝑤 “ {𝑥})) ⊆ (𝐴 ∩ (𝑤 “ {𝑥}))) |
| 20 | | simpllr 776 |
. . . . . . . . . . . . . . 15
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ∈
(unifTop‘𝑈)) ∧
𝑏 ∈
(unifTop‘(𝑈
↾t (𝐴
× 𝐴)))) ∧ 𝑥 ∈ 𝑏) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡 ∈ 𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) |
| 21 | 20 | imaeq1d 6077 |
. . . . . . . . . . . . . 14
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ∈
(unifTop‘𝑈)) ∧
𝑏 ∈
(unifTop‘(𝑈
↾t (𝐴
× 𝐴)))) ∧ 𝑥 ∈ 𝑏) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡 ∈ 𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → (𝑢 “ {𝑥}) = ((𝑤 ∩ (𝐴 × 𝐴)) “ {𝑥})) |
| 22 | 9 | ad5antr 734 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ∈
(unifTop‘𝑈)) ∧
𝑏 ∈
(unifTop‘(𝑈
↾t (𝐴
× 𝐴)))) ∧ 𝑥 ∈ 𝑏) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) → 𝑏 ⊆ 𝐴) |
| 23 | | simp-5r 786 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ∈
(unifTop‘𝑈)) ∧
𝑏 ∈
(unifTop‘(𝑈
↾t (𝐴
× 𝐴)))) ∧ 𝑥 ∈ 𝑏) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) → 𝑥 ∈ 𝑏) |
| 24 | 22, 23 | sseldd 3984 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ∈
(unifTop‘𝑈)) ∧
𝑏 ∈
(unifTop‘(𝑈
↾t (𝐴
× 𝐴)))) ∧ 𝑥 ∈ 𝑏) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) → 𝑥 ∈ 𝐴) |
| 25 | 24 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ∈
(unifTop‘𝑈)) ∧
𝑏 ∈
(unifTop‘(𝑈
↾t (𝐴
× 𝐴)))) ∧ 𝑥 ∈ 𝑏) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡 ∈ 𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → 𝑥 ∈ 𝐴) |
| 26 | | inimasn 6176 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ V → ((𝑤 ∩ (𝐴 × 𝐴)) “ {𝑥}) = ((𝑤 “ {𝑥}) ∩ ((𝐴 × 𝐴) “ {𝑥}))) |
| 27 | 26 | elv 3485 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∩ (𝐴 × 𝐴)) “ {𝑥}) = ((𝑤 “ {𝑥}) ∩ ((𝐴 × 𝐴) “ {𝑥})) |
| 28 | | xpimasn 6205 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝐴 → ((𝐴 × 𝐴) “ {𝑥}) = 𝐴) |
| 29 | 28 | ineq2d 4220 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝐴 → ((𝑤 “ {𝑥}) ∩ ((𝐴 × 𝐴) “ {𝑥})) = ((𝑤 “ {𝑥}) ∩ 𝐴)) |
| 30 | 27, 29 | eqtrid 2789 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐴 → ((𝑤 ∩ (𝐴 × 𝐴)) “ {𝑥}) = ((𝑤 “ {𝑥}) ∩ 𝐴)) |
| 31 | | incom 4209 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 “ {𝑥}) ∩ 𝐴) = (𝐴 ∩ (𝑤 “ {𝑥})) |
| 32 | 30, 31 | eqtrdi 2793 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐴 → ((𝑤 ∩ (𝐴 × 𝐴)) “ {𝑥}) = (𝐴 ∩ (𝑤 “ {𝑥}))) |
| 33 | 25, 32 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ∈
(unifTop‘𝑈)) ∧
𝑏 ∈
(unifTop‘(𝑈
↾t (𝐴
× 𝐴)))) ∧ 𝑥 ∈ 𝑏) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡 ∈ 𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → ((𝑤 ∩ (𝐴 × 𝐴)) “ {𝑥}) = (𝐴 ∩ (𝑤 “ {𝑥}))) |
| 34 | 21, 33 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ∈
(unifTop‘𝑈)) ∧
𝑏 ∈
(unifTop‘(𝑈
↾t (𝐴
× 𝐴)))) ∧ 𝑥 ∈ 𝑏) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡 ∈ 𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → (𝑢 “ {𝑥}) = (𝐴 ∩ (𝑤 “ {𝑥}))) |
| 35 | 19, 34 | sseqtrrd 4021 |
. . . . . . . . . . . 12
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ∈
(unifTop‘𝑈)) ∧
𝑏 ∈
(unifTop‘(𝑈
↾t (𝐴
× 𝐴)))) ∧ 𝑥 ∈ 𝑏) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡 ∈ 𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → ((𝑡 “ {𝑥}) ∩ (𝑤 “ {𝑥})) ⊆ (𝑢 “ {𝑥})) |
| 36 | | simp-5r 786 |
. . . . . . . . . . . 12
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ∈
(unifTop‘𝑈)) ∧
𝑏 ∈
(unifTop‘(𝑈
↾t (𝐴
× 𝐴)))) ∧ 𝑥 ∈ 𝑏) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡 ∈ 𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → (𝑢 “ {𝑥}) ⊆ 𝑏) |
| 37 | 35, 36 | sstrd 3994 |
. . . . . . . . . . 11
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ∈
(unifTop‘𝑈)) ∧
𝑏 ∈
(unifTop‘(𝑈
↾t (𝐴
× 𝐴)))) ∧ 𝑥 ∈ 𝑏) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡 ∈ 𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → ((𝑡 “ {𝑥}) ∩ (𝑤 “ {𝑥})) ⊆ 𝑏) |
| 38 | 17, 37 | sstrid 3995 |
. . . . . . . . . 10
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ∈
(unifTop‘𝑈)) ∧
𝑏 ∈
(unifTop‘(𝑈
↾t (𝐴
× 𝐴)))) ∧ 𝑥 ∈ 𝑏) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡 ∈ 𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → ((𝑡 ∩ 𝑤) “ {𝑥}) ⊆ 𝑏) |
| 39 | | imaeq1 6073 |
. . . . . . . . . . . 12
⊢ (𝑣 = (𝑡 ∩ 𝑤) → (𝑣 “ {𝑥}) = ((𝑡 ∩ 𝑤) “ {𝑥})) |
| 40 | 39 | sseq1d 4015 |
. . . . . . . . . . 11
⊢ (𝑣 = (𝑡 ∩ 𝑤) → ((𝑣 “ {𝑥}) ⊆ 𝑏 ↔ ((𝑡 ∩ 𝑤) “ {𝑥}) ⊆ 𝑏)) |
| 41 | 40 | rspcev 3622 |
. . . . . . . . . 10
⊢ (((𝑡 ∩ 𝑤) ∈ 𝑈 ∧ ((𝑡 ∩ 𝑤) “ {𝑥}) ⊆ 𝑏) → ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑏) |
| 42 | 16, 38, 41 | syl2anc 584 |
. . . . . . . . 9
⊢
((((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ∈
(unifTop‘𝑈)) ∧
𝑏 ∈
(unifTop‘(𝑈
↾t (𝐴
× 𝐴)))) ∧ 𝑥 ∈ 𝑏) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) ∧ 𝑡 ∈ 𝑈) ∧ (𝑡 “ {𝑥}) ⊆ 𝐴) → ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑏) |
| 43 | | simp-4l 783 |
. . . . . . . . . . 11
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ∈
(unifTop‘𝑈)) ∧
𝑏 ∈
(unifTop‘(𝑈
↾t (𝐴
× 𝐴)))) ∧ 𝑥 ∈ 𝑏) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) → (𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈))) |
| 44 | 43 | ad2antrr 726 |
. . . . . . . . . 10
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ∈
(unifTop‘𝑈)) ∧
𝑏 ∈
(unifTop‘(𝑈
↾t (𝐴
× 𝐴)))) ∧ 𝑥 ∈ 𝑏) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) → (𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈))) |
| 45 | 1 | simplbda 499 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) → ∀𝑥 ∈ 𝐴 ∃𝑡 ∈ 𝑈 (𝑡 “ {𝑥}) ⊆ 𝐴) |
| 46 | 45 | r19.21bi 3251 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑥 ∈ 𝐴) → ∃𝑡 ∈ 𝑈 (𝑡 “ {𝑥}) ⊆ 𝐴) |
| 47 | 44, 24, 46 | syl2anc 584 |
. . . . . . . . 9
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ∈
(unifTop‘𝑈)) ∧
𝑏 ∈
(unifTop‘(𝑈
↾t (𝐴
× 𝐴)))) ∧ 𝑥 ∈ 𝑏) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) → ∃𝑡 ∈ 𝑈 (𝑡 “ {𝑥}) ⊆ 𝐴) |
| 48 | 42, 47 | r19.29a 3162 |
. . . . . . . 8
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ∈
(unifTop‘𝑈)) ∧
𝑏 ∈
(unifTop‘(𝑈
↾t (𝐴
× 𝐴)))) ∧ 𝑥 ∈ 𝑏) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) → ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑏) |
| 49 | | simplr 769 |
. . . . . . . . 9
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ∈
(unifTop‘𝑈)) ∧
𝑏 ∈
(unifTop‘(𝑈
↾t (𝐴
× 𝐴)))) ∧ 𝑥 ∈ 𝑏) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) → 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) |
| 50 | | sqxpexg 7775 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (unifTop‘𝑈) → (𝐴 × 𝐴) ∈ V) |
| 51 | | elrest 17472 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V) → (𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴)) ↔ ∃𝑤 ∈ 𝑈 𝑢 = (𝑤 ∩ (𝐴 × 𝐴)))) |
| 52 | 50, 51 | sylan2 593 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) → (𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴)) ↔ ∃𝑤 ∈ 𝑈 𝑢 = (𝑤 ∩ (𝐴 × 𝐴)))) |
| 53 | 52 | biimpa 476 |
. . . . . . . . 9
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) → ∃𝑤 ∈ 𝑈 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) |
| 54 | 43, 49, 53 | syl2anc 584 |
. . . . . . . 8
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ∈
(unifTop‘𝑈)) ∧
𝑏 ∈
(unifTop‘(𝑈
↾t (𝐴
× 𝐴)))) ∧ 𝑥 ∈ 𝑏) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) → ∃𝑤 ∈ 𝑈 𝑢 = (𝑤 ∩ (𝐴 × 𝐴))) |
| 55 | 48, 54 | r19.29a 3162 |
. . . . . . 7
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐴 ∈
(unifTop‘𝑈)) ∧
𝑏 ∈
(unifTop‘(𝑈
↾t (𝐴
× 𝐴)))) ∧ 𝑥 ∈ 𝑏) ∧ 𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))) ∧ (𝑢 “ {𝑥}) ⊆ 𝑏) → ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑏) |
| 56 | 8 | simplbda 499 |
. . . . . . . 8
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈 ↾t (𝐴 × 𝐴)))) → ∀𝑥 ∈ 𝑏 ∃𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))(𝑢 “ {𝑥}) ⊆ 𝑏) |
| 57 | 56 | r19.21bi 3251 |
. . . . . . 7
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈 ↾t (𝐴 × 𝐴)))) ∧ 𝑥 ∈ 𝑏) → ∃𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))(𝑢 “ {𝑥}) ⊆ 𝑏) |
| 58 | 55, 57 | r19.29a 3162 |
. . . . . 6
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈 ↾t (𝐴 × 𝐴)))) ∧ 𝑥 ∈ 𝑏) → ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑏) |
| 59 | 58 | ralrimiva 3146 |
. . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈 ↾t (𝐴 × 𝐴)))) → ∀𝑥 ∈ 𝑏 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑏) |
| 60 | | elutop 24242 |
. . . . . 6
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑏 ∈ (unifTop‘𝑈) ↔ (𝑏 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑏 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑏))) |
| 61 | 60 | ad2antrr 726 |
. . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈 ↾t (𝐴 × 𝐴)))) → (𝑏 ∈ (unifTop‘𝑈) ↔ (𝑏 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝑏 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑏))) |
| 62 | 11, 59, 61 | mpbir2and 713 |
. . . 4
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝑏 ∈ (unifTop‘𝑈)) |
| 63 | | dfss2 3969 |
. . . . . 6
⊢ (𝑏 ⊆ 𝐴 ↔ (𝑏 ∩ 𝐴) = 𝑏) |
| 64 | 9, 63 | sylib 218 |
. . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈 ↾t (𝐴 × 𝐴)))) → (𝑏 ∩ 𝐴) = 𝑏) |
| 65 | 64 | eqcomd 2743 |
. . . 4
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝑏 = (𝑏 ∩ 𝐴)) |
| 66 | | ineq1 4213 |
. . . . 5
⊢ (𝑎 = 𝑏 → (𝑎 ∩ 𝐴) = (𝑏 ∩ 𝐴)) |
| 67 | 66 | rspceeqv 3645 |
. . . 4
⊢ ((𝑏 ∈ (unifTop‘𝑈) ∧ 𝑏 = (𝑏 ∩ 𝐴)) → ∃𝑎 ∈ (unifTop‘𝑈)𝑏 = (𝑎 ∩ 𝐴)) |
| 68 | 62, 65, 67 | syl2anc 584 |
. . 3
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈 ↾t (𝐴 × 𝐴)))) → ∃𝑎 ∈ (unifTop‘𝑈)𝑏 = (𝑎 ∩ 𝐴)) |
| 69 | | fvex 6919 |
. . . . 5
⊢
(unifTop‘𝑈)
∈ V |
| 70 | | elrest 17472 |
. . . . 5
⊢
(((unifTop‘𝑈)
∈ V ∧ 𝐴 ∈
(unifTop‘𝑈)) →
(𝑏 ∈
((unifTop‘𝑈)
↾t 𝐴)
↔ ∃𝑎 ∈
(unifTop‘𝑈)𝑏 = (𝑎 ∩ 𝐴))) |
| 71 | 69, 70 | mpan 690 |
. . . 4
⊢ (𝐴 ∈ (unifTop‘𝑈) → (𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴) ↔ ∃𝑎 ∈ (unifTop‘𝑈)𝑏 = (𝑎 ∩ 𝐴))) |
| 72 | 71 | ad2antlr 727 |
. . 3
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈 ↾t (𝐴 × 𝐴)))) → (𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴) ↔ ∃𝑎 ∈ (unifTop‘𝑈)𝑏 = (𝑎 ∩ 𝐴))) |
| 73 | 68, 72 | mpbird 257 |
. 2
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) ∧ 𝑏 ∈ (unifTop‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) |
| 74 | 4, 73 | eqelssd 4005 |
1
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) → ((unifTop‘𝑈) ↾t 𝐴) = (unifTop‘(𝑈 ↾t (𝐴 × 𝐴)))) |