MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp-8r Structured version   Visualization version   GIF version

Theorem simp-8r 791
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.)
Assertion
Ref Expression
simp-8r (((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓)

Proof of Theorem simp-8r
StepHypRef Expression
1 id 22 . 2 (𝜓𝜓)
21ad8antlr 741 1 (((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  chnso  18532  2sqmo  27376  legso  28578  opphl  28733  f1otrg  28850  2ndresdju  32633  cyc3conja  33133  rloccring  33244  ssdifidlprm  33430  mxidlprm  33442  mxidlirred  33444  constrconj  33779  constrfin  33780  constrelextdg2  33781  cos9thpiminplylem2  33817  qtophaus  33870  esumcst  34097  dffltz  42752  smfmullem3  46915
  Copyright terms: Public domain W3C validator