Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp-8r Structured version   Visualization version   GIF version

Theorem simp-8r 791
 Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.)
Assertion
Ref Expression
simp-8r (((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓)

Proof of Theorem simp-8r
StepHypRef Expression
1 id 22 . 2 (𝜓𝜓)
21ad8antlr 740 1 (((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 400 This theorem is referenced by:  2sqmo  26125  legso  26497  opphl  26652  f1otrg  26769  2ndresdju  30513  cyc3conja  30954  mxidlprm  31165  qtophaus  31311  esumcst  31554  dffltz  39991  smfmullem3  43819
 Copyright terms: Public domain W3C validator