| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp-8r | Structured version Visualization version GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
| Ref | Expression |
|---|---|
| simp-8r | ⊢ (((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜓 → 𝜓) | |
| 2 | 1 | ad8antlr 741 | 1 ⊢ (((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: chnso 18527 2sqmo 27373 legso 28575 opphl 28730 f1otrg 28847 2ndresdju 32626 cyc3conja 33121 rloccring 33232 ssdifidlprm 33418 mxidlprm 33430 mxidlirred 33432 constrconj 33753 constrfin 33754 constrelextdg2 33755 cos9thpiminplylem2 33791 qtophaus 33844 esumcst 34071 dffltz 42666 smfmullem3 46830 |
| Copyright terms: Public domain | W3C validator |