MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp-8r Structured version   Visualization version   GIF version

Theorem simp-8r 791
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.)
Assertion
Ref Expression
simp-8r (((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓)

Proof of Theorem simp-8r
StepHypRef Expression
1 id 22 . 2 (𝜓𝜓)
21ad8antlr 741 1 (((((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  chnso  18527  2sqmo  27373  legso  28575  opphl  28730  f1otrg  28847  2ndresdju  32626  cyc3conja  33121  rloccring  33232  ssdifidlprm  33418  mxidlprm  33430  mxidlirred  33432  constrconj  33753  constrfin  33754  constrelextdg2  33755  cos9thpiminplylem2  33791  qtophaus  33844  esumcst  34071  dffltz  42666  smfmullem3  46830
  Copyright terms: Public domain W3C validator