Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lbsdiflsp0 Structured version   Visualization version   GIF version

Theorem lbsdiflsp0 33601
Description: The linear spans of two disjunct independent sets only have a trivial intersection. This can be seen as the opposite direction of lindsun 33600. (Contributed by Thierry Arnoux, 17-May-2023.)
Hypotheses
Ref Expression
lbsdiflsp0.j 𝐽 = (LBasis‘𝑊)
lbsdiflsp0.n 𝑁 = (LSpan‘𝑊)
lbsdiflsp0.1 0 = (0g𝑊)
Assertion
Ref Expression
lbsdiflsp0 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑉𝐵) → ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉)) = { 0 })

Proof of Theorem lbsdiflsp0
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp-4r 783 . . . . . . . . 9 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣))))
2 fveq2 6826 . . . . . . . . . . . 12 (𝑢 = 𝑣 → (𝑎𝑢) = (𝑎𝑣))
3 id 22 . . . . . . . . . . . 12 (𝑢 = 𝑣𝑢 = 𝑣)
42, 3oveq12d 7371 . . . . . . . . . . 11 (𝑢 = 𝑣 → ((𝑎𝑢)( ·𝑠𝑊)𝑢) = ((𝑎𝑣)( ·𝑠𝑊)𝑣))
54cbvmptv 5199 . . . . . . . . . 10 (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢)) = (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣))
65oveq2i 7364 . . . . . . . . 9 (𝑊 Σg (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢))) = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))
71, 6eqtr4di 2782 . . . . . . . 8 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑥 = (𝑊 Σg (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢))))
8 simp-4r 783 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑎 finSupp (0g‘(Scalar‘𝑊)))
9 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑏 finSupp (0g‘(Scalar‘𝑊)))
10 simp-8l 790 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑊 ∈ LVec)
11 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝐵𝐽)
1211ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝐵𝐽)
13 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝑉𝐵)
1413ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑉𝐵)
15 simp-5r 785 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉))
16 fvexd 6841 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (Base‘(Scalar‘𝑊)) ∈ V)
1711, 13ssexd 5266 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝑉 ∈ V)
1816, 17elmapd 8774 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉) ↔ 𝑎:𝑉⟶(Base‘(Scalar‘𝑊))))
1918biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) → 𝑎:𝑉⟶(Base‘(Scalar‘𝑊)))
2010, 12, 14, 15, 19syl1111anc 840 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑎:𝑉⟶(Base‘(Scalar‘𝑊)))
21 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉)))
22 lveclmod 21028 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2322ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝑊 ∈ LMod)
24 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (Base‘𝑊) = (Base‘𝑊)
25 lbsdiflsp0.j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝐽 = (LBasis‘𝑊)
2624, 25lbsss 20999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐵𝐽𝐵 ⊆ (Base‘𝑊))
2726ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝐵 ⊆ (Base‘𝑊))
2827ssdifssd 4100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝐵𝑉) ⊆ (Base‘𝑊))
29 lbsdiflsp0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 = (0g𝑊)
30 lbsdiflsp0.n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑁 = (LSpan‘𝑊)
3129, 24, 300ellsp 33319 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑊 ∈ LMod ∧ (𝐵𝑉) ⊆ (Base‘𝑊)) → 0 ∈ (𝑁‘(𝐵𝑉)))
3223, 28, 31syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 0 ∈ (𝑁‘(𝐵𝑉)))
3332elfvexd 6863 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝐵𝑉) ∈ V)
3416, 33elmapd 8774 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉)) ↔ 𝑏:(𝐵𝑉)⟶(Base‘(Scalar‘𝑊))))
3534biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) → 𝑏:(𝐵𝑉)⟶(Base‘(Scalar‘𝑊)))
3610, 12, 14, 21, 35syl1111anc 840 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑏:(𝐵𝑉)⟶(Base‘(Scalar‘𝑊)))
37 disjdif 4425 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑉 ∩ (𝐵𝑉)) = ∅
3837a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → (𝑉 ∩ (𝐵𝑉)) = ∅)
3920, 36, 38fun2d 6692 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → (𝑎𝑏):(𝑉 ∪ (𝐵𝑉))⟶(Base‘(Scalar‘𝑊)))
40 undif 4435 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑉𝐵 ↔ (𝑉 ∪ (𝐵𝑉)) = 𝐵)
4114, 40sylib 218 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → (𝑉 ∪ (𝐵𝑉)) = 𝐵)
4241feq2d 6640 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → ((𝑎𝑏):(𝑉 ∪ (𝐵𝑉))⟶(Base‘(Scalar‘𝑊)) ↔ (𝑎𝑏):𝐵⟶(Base‘(Scalar‘𝑊))))
4339, 42mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → (𝑎𝑏):𝐵⟶(Base‘(Scalar‘𝑊)))
4443ffund 6660 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → Fun (𝑎𝑏))
4544fsuppunbi 9298 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → ((𝑎𝑏) finSupp (0g‘(Scalar‘𝑊)) ↔ (𝑎 finSupp (0g‘(Scalar‘𝑊)) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊)))))
468, 9, 45mpbir2and 713 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → (𝑎𝑏) finSupp (0g‘(Scalar‘𝑊)))
4746adantr 480 . . . . . . . . . . . . . . . . . 18 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑎𝑏) finSupp (0g‘(Scalar‘𝑊)))
48 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (+g𝑊) = (+g𝑊)
49 lmodcmn 20831 . . . . . . . . . . . . . . . . . . . . . 22 (𝑊 ∈ LMod → 𝑊 ∈ CMnd)
5022, 49syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑊 ∈ LVec → 𝑊 ∈ CMnd)
5150ad9antr 742 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑊 ∈ CMnd)
5211ad7antr 738 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝐵𝐽)
5323ad8antr 740 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → 𝑊 ∈ LMod)
54 elmapfn 8799 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉) → 𝑎 Fn 𝑉)
5554ad6antlr 737 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑎 Fn 𝑉)
5655adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → 𝑎 Fn 𝑉)
57 elmapfn 8799 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉)) → 𝑏 Fn (𝐵𝑉))
5857ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑏 Fn (𝐵𝑉))
5958adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → 𝑏 Fn (𝐵𝑉))
6037a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → (𝑉 ∩ (𝐵𝑉)) = ∅)
61 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → 𝑢𝑉)
62 fvun1 6918 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 Fn 𝑉𝑏 Fn (𝐵𝑉) ∧ ((𝑉 ∩ (𝐵𝑉)) = ∅ ∧ 𝑢𝑉)) → ((𝑎𝑏)‘𝑢) = (𝑎𝑢))
6356, 59, 60, 61, 62syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → ((𝑎𝑏)‘𝑢) = (𝑎𝑢))
6463adantlr 715 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢𝑉) → ((𝑎𝑏)‘𝑢) = (𝑎𝑢))
6520ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢𝑉) → 𝑎:𝑉⟶(Base‘(Scalar‘𝑊)))
66 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢𝑉) → 𝑢𝑉)
6765, 66ffvelcdmd 7023 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢𝑉) → (𝑎𝑢) ∈ (Base‘(Scalar‘𝑊)))
6864, 67eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢𝑉) → ((𝑎𝑏)‘𝑢) ∈ (Base‘(Scalar‘𝑊)))
6955adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢 ∈ (𝐵𝑉)) → 𝑎 Fn 𝑉)
7058adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢 ∈ (𝐵𝑉)) → 𝑏 Fn (𝐵𝑉))
7137a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢 ∈ (𝐵𝑉)) → (𝑉 ∩ (𝐵𝑉)) = ∅)
72 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢 ∈ (𝐵𝑉)) → 𝑢 ∈ (𝐵𝑉))
73 fvun2 6919 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 Fn 𝑉𝑏 Fn (𝐵𝑉) ∧ ((𝑉 ∩ (𝐵𝑉)) = ∅ ∧ 𝑢 ∈ (𝐵𝑉))) → ((𝑎𝑏)‘𝑢) = (𝑏𝑢))
7469, 70, 71, 72, 73syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢 ∈ (𝐵𝑉)) → ((𝑎𝑏)‘𝑢) = (𝑏𝑢))
7574adantlr 715 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢 ∈ (𝐵𝑉)) → ((𝑎𝑏)‘𝑢) = (𝑏𝑢))
7636ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢 ∈ (𝐵𝑉)) → 𝑏:(𝐵𝑉)⟶(Base‘(Scalar‘𝑊)))
77 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢 ∈ (𝐵𝑉)) → 𝑢 ∈ (𝐵𝑉))
7876, 77ffvelcdmd 7023 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢 ∈ (𝐵𝑉)) → (𝑏𝑢) ∈ (Base‘(Scalar‘𝑊)))
7975, 78eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢 ∈ (𝐵𝑉)) → ((𝑎𝑏)‘𝑢) ∈ (Base‘(Scalar‘𝑊)))
80 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → 𝑢𝐵)
8140biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑉𝐵 → (𝑉 ∪ (𝐵𝑉)) = 𝐵)
8281ad8antlr 741 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑉 ∪ (𝐵𝑉)) = 𝐵)
8382eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝐵 = (𝑉 ∪ (𝐵𝑉)))
8483adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → 𝐵 = (𝑉 ∪ (𝐵𝑉)))
8580, 84eleqtrd 2830 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → 𝑢 ∈ (𝑉 ∪ (𝐵𝑉)))
86 elun 4106 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 ∈ (𝑉 ∪ (𝐵𝑉)) ↔ (𝑢𝑉𝑢 ∈ (𝐵𝑉)))
8785, 86sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → (𝑢𝑉𝑢 ∈ (𝐵𝑉)))
8868, 79, 87mpjaodan 960 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → ((𝑎𝑏)‘𝑢) ∈ (Base‘(Scalar‘𝑊)))
8927ad8antr 740 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → 𝐵 ⊆ (Base‘𝑊))
9089, 80sseldd 3938 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → 𝑢 ∈ (Base‘𝑊))
91 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (Scalar‘𝑊) = (Scalar‘𝑊)
92 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 ( ·𝑠𝑊) = ( ·𝑠𝑊)
93 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
9424, 91, 92, 93lmodvscl 20799 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ LMod ∧ ((𝑎𝑏)‘𝑢) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑢 ∈ (Base‘𝑊)) → (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢) ∈ (Base‘𝑊))
9553, 88, 90, 94syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢) ∈ (Base‘𝑊))
96 simp-9l 792 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑊 ∈ LVec)
9796, 22syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑊 ∈ LMod)
98 eqidd 2730 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (Scalar‘𝑊) = (Scalar‘𝑊))
99 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
10043adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑎𝑏):𝐵⟶(Base‘(Scalar‘𝑊)))
101100feqmptd 6895 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑎𝑏) = (𝑢𝐵 ↦ ((𝑎𝑏)‘𝑢)))
102101, 47eqbrtrrd 5119 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑢𝐵 ↦ ((𝑎𝑏)‘𝑢)) finSupp (0g‘(Scalar‘𝑊)))
10352, 97, 98, 24, 88, 90, 29, 99, 92, 102mptscmfsupp0 20848 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)) finSupp 0 )
10437a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑉 ∩ (𝐵𝑉)) = ∅)
10524, 29, 48, 51, 52, 95, 103, 104, 83gsumsplit2 19826 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = ((𝑊 Σg (𝑢𝑉 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))(+g𝑊)(𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))))
10663oveq1d 7368 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢) = ((𝑎𝑢)( ·𝑠𝑊)𝑢))
107106mpteq2dva 5188 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑢𝑉 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)) = (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢)))
108107oveq2d 7369 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑊 Σg (𝑢𝑉 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = (𝑊 Σg (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢))))
10974oveq1d 7368 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢 ∈ (𝐵𝑉)) → (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢) = ((𝑏𝑢)( ·𝑠𝑊)𝑢))
110109mpteq2dva 5188 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑢 ∈ (𝐵𝑉) ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)) = (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢)))
111110oveq2d 7369 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = (𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢))))
112108, 111oveq12d 7371 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((𝑊 Σg (𝑢𝑉 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))(+g𝑊)(𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))) = ((𝑊 Σg (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢)))(+g𝑊)(𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢)))))
113 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣))))
114 fveq2 6826 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑢 = 𝑣 → (𝑏𝑢) = (𝑏𝑣))
115114, 3oveq12d 7371 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = 𝑣 → ((𝑏𝑢)( ·𝑠𝑊)𝑢) = ((𝑏𝑣)( ·𝑠𝑊)𝑣))
116115cbvmptv 5199 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢)) = (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣))
117116oveq2i 7364 . . . . . . . . . . . . . . . . . . . . . 22 (𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢))) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))
118113, 117eqtr4di 2782 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢))))
1197, 118oveq12d 7371 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑥(+g𝑊)((invg𝑊)‘𝑥)) = ((𝑊 Σg (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢)))(+g𝑊)(𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢)))))
120 lmodgrp 20788 . . . . . . . . . . . . . . . . . . . . . 22 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
12196, 22, 1203syl 18 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑊 ∈ Grp)
12213, 27sstrd 3948 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝑉 ⊆ (Base‘𝑊))
12324, 30lspssv 20904 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑊 ∈ LMod ∧ 𝑉 ⊆ (Base‘𝑊)) → (𝑁𝑉) ⊆ (Base‘𝑊))
12423, 122, 123syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝑁𝑉) ⊆ (Base‘𝑊))
125124ad7antr 738 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑁𝑉) ⊆ (Base‘𝑊))
126 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉)))
127126elin2d 4158 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → 𝑥 ∈ (𝑁𝑉))
128127ad6antr 736 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑥 ∈ (𝑁𝑉))
129125, 128sseldd 3938 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑥 ∈ (Base‘𝑊))
130 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (invg𝑊) = (invg𝑊)
13124, 48, 29, 130grprinv 18887 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(+g𝑊)((invg𝑊)‘𝑥)) = 0 )
132121, 129, 131syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑥(+g𝑊)((invg𝑊)‘𝑥)) = 0 )
133112, 119, 1323eqtr2d 2770 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((𝑊 Σg (𝑢𝑉 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))(+g𝑊)(𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))) = 0 )
134105, 133eqtrd 2764 . . . . . . . . . . . . . . . . . 18 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = 0 )
135 breq1 5098 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = (𝑎𝑏) → (𝑐 finSupp (0g‘(Scalar‘𝑊)) ↔ (𝑎𝑏) finSupp (0g‘(Scalar‘𝑊))))
136 fveq1 6825 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = (𝑎𝑏) → (𝑐𝑢) = ((𝑎𝑏)‘𝑢))
137136oveq1d 7368 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = (𝑎𝑏) → ((𝑐𝑢)( ·𝑠𝑊)𝑢) = (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))
138137mpteq2dv 5189 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = (𝑎𝑏) → (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢)) = (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))
139138oveq2d 7369 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = (𝑎𝑏) → (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))))
140139eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = (𝑎𝑏) → ((𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ↔ (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = 0 ))
141135, 140anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = (𝑎𝑏) → ((𝑐 finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ) ↔ ((𝑎𝑏) finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = 0 )))
142 eqeq1 2733 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = (𝑎𝑏) → (𝑐 = (𝐵 × {(0g‘(Scalar‘𝑊))}) ↔ (𝑎𝑏) = (𝐵 × {(0g‘(Scalar‘𝑊))})))
143141, 142imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑐 = (𝑎𝑏) → (((𝑐 finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → 𝑐 = (𝐵 × {(0g‘(Scalar‘𝑊))})) ↔ (((𝑎𝑏) finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → (𝑎𝑏) = (𝐵 × {(0g‘(Scalar‘𝑊))}))))
14425lbslinds 21758 . . . . . . . . . . . . . . . . . . . . . 22 𝐽 ⊆ (LIndS‘𝑊)
145144, 11sselid 3935 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝐵 ∈ (LIndS‘𝑊))
14624, 93, 91, 92, 29, 99islinds5 33317 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑊 ∈ LMod ∧ 𝐵 ⊆ (Base‘𝑊)) → (𝐵 ∈ (LIndS‘𝑊) ↔ ∀𝑐 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝐵)((𝑐 finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → 𝑐 = (𝐵 × {(0g‘(Scalar‘𝑊))}))))
147146biimpa 476 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ LMod ∧ 𝐵 ⊆ (Base‘𝑊)) ∧ 𝐵 ∈ (LIndS‘𝑊)) → ∀𝑐 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝐵)((𝑐 finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → 𝑐 = (𝐵 × {(0g‘(Scalar‘𝑊))})))
14823, 27, 145, 147syl21anc 837 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → ∀𝑐 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝐵)((𝑐 finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → 𝑐 = (𝐵 × {(0g‘(Scalar‘𝑊))})))
149148ad7antr 738 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ∀𝑐 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝐵)((𝑐 finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → 𝑐 = (𝐵 × {(0g‘(Scalar‘𝑊))})))
150 fvexd 6841 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (Base‘(Scalar‘𝑊)) ∈ V)
151150, 52elmapd 8774 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((𝑎𝑏) ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝐵) ↔ (𝑎𝑏):𝐵⟶(Base‘(Scalar‘𝑊))))
152100, 151mpbird 257 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑎𝑏) ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝐵))
153143, 149, 152rspcdva 3580 . . . . . . . . . . . . . . . . . 18 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (((𝑎𝑏) finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → (𝑎𝑏) = (𝐵 × {(0g‘(Scalar‘𝑊))})))
15447, 134, 153mp2and 699 . . . . . . . . . . . . . . . . 17 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑎𝑏) = (𝐵 × {(0g‘(Scalar‘𝑊))}))
155154reseq1d 5933 . . . . . . . . . . . . . . . 16 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((𝑎𝑏) ↾ 𝑉) = ((𝐵 × {(0g‘(Scalar‘𝑊))}) ↾ 𝑉))
156 fnunres1 6598 . . . . . . . . . . . . . . . . 17 ((𝑎 Fn 𝑉𝑏 Fn (𝐵𝑉) ∧ (𝑉 ∩ (𝐵𝑉)) = ∅) → ((𝑎𝑏) ↾ 𝑉) = 𝑎)
15755, 58, 104, 156syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((𝑎𝑏) ↾ 𝑉) = 𝑎)
158 xpssres 5973 . . . . . . . . . . . . . . . . 17 (𝑉𝐵 → ((𝐵 × {(0g‘(Scalar‘𝑊))}) ↾ 𝑉) = (𝑉 × {(0g‘(Scalar‘𝑊))}))
159158ad8antlr 741 . . . . . . . . . . . . . . . 16 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((𝐵 × {(0g‘(Scalar‘𝑊))}) ↾ 𝑉) = (𝑉 × {(0g‘(Scalar‘𝑊))}))
160155, 157, 1593eqtr3d 2772 . . . . . . . . . . . . . . 15 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑎 = (𝑉 × {(0g‘(Scalar‘𝑊))}))
161160adantr 480 . . . . . . . . . . . . . 14 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → 𝑎 = (𝑉 × {(0g‘(Scalar‘𝑊))}))
162161fveq1d 6828 . . . . . . . . . . . . 13 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → (𝑎𝑢) = ((𝑉 × {(0g‘(Scalar‘𝑊))})‘𝑢))
163 fvex 6839 . . . . . . . . . . . . . . 15 (0g‘(Scalar‘𝑊)) ∈ V
164163fvconst2 7144 . . . . . . . . . . . . . 14 (𝑢𝑉 → ((𝑉 × {(0g‘(Scalar‘𝑊))})‘𝑢) = (0g‘(Scalar‘𝑊)))
16561, 164syl 17 . . . . . . . . . . . . 13 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → ((𝑉 × {(0g‘(Scalar‘𝑊))})‘𝑢) = (0g‘(Scalar‘𝑊)))
166162, 165eqtrd 2764 . . . . . . . . . . . 12 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → (𝑎𝑢) = (0g‘(Scalar‘𝑊)))
167166oveq1d 7368 . . . . . . . . . . 11 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → ((𝑎𝑢)( ·𝑠𝑊)𝑢) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑢))
168122ad8antr 740 . . . . . . . . . . . . 13 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → 𝑉 ⊆ (Base‘𝑊))
169168, 61sseldd 3938 . . . . . . . . . . . 12 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → 𝑢 ∈ (Base‘𝑊))
17024, 91, 92, 99, 29lmod0vs 20816 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑢 ∈ (Base‘𝑊)) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑢) = 0 )
17197, 169, 170syl2an2r 685 . . . . . . . . . . 11 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑢) = 0 )
172167, 171eqtrd 2764 . . . . . . . . . 10 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → ((𝑎𝑢)( ·𝑠𝑊)𝑢) = 0 )
173172mpteq2dva 5188 . . . . . . . . 9 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢)) = (𝑢𝑉0 ))
174173oveq2d 7369 . . . . . . . 8 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑊 Σg (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢))) = (𝑊 Σg (𝑢𝑉0 )))
175 cmnmnd 19694 . . . . . . . . . 10 (𝑊 ∈ CMnd → 𝑊 ∈ Mnd)
17651, 175syl 17 . . . . . . . . 9 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑊 ∈ Mnd)
177128elfvexd 6863 . . . . . . . . 9 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑉 ∈ V)
17829gsumz 18728 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 𝑉 ∈ V) → (𝑊 Σg (𝑢𝑉0 )) = 0 )
179176, 177, 178syl2anc 584 . . . . . . . 8 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑊 Σg (𝑢𝑉0 )) = 0 )
1807, 174, 1793eqtrd 2768 . . . . . . 7 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑥 = 0 )
181180anasss 466 . . . . . 6 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ (𝑏 finSupp (0g‘(Scalar‘𝑊)) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣))))) → 𝑥 = 0 )
182 eqid 2729 . . . . . . . . . . . . 13 (LSubSp‘𝑊) = (LSubSp‘𝑊)
18324, 182, 30lspcl 20897 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝐵𝑉) ⊆ (Base‘𝑊)) → (𝑁‘(𝐵𝑉)) ∈ (LSubSp‘𝑊))
18423, 28, 183syl2anc 584 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝑁‘(𝐵𝑉)) ∈ (LSubSp‘𝑊))
185184adantr 480 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → (𝑁‘(𝐵𝑉)) ∈ (LSubSp‘𝑊))
186182lsssubg 20878 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ (𝑁‘(𝐵𝑉)) ∈ (LSubSp‘𝑊)) → (𝑁‘(𝐵𝑉)) ∈ (SubGrp‘𝑊))
18723, 185, 186syl2an2r 685 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → (𝑁‘(𝐵𝑉)) ∈ (SubGrp‘𝑊))
188126elin1d 4157 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → 𝑥 ∈ (𝑁‘(𝐵𝑉)))
189130subginvcl 19032 . . . . . . . . 9 (((𝑁‘(𝐵𝑉)) ∈ (SubGrp‘𝑊) ∧ 𝑥 ∈ (𝑁‘(𝐵𝑉))) → ((invg𝑊)‘𝑥) ∈ (𝑁‘(𝐵𝑉)))
190187, 188, 189syl2anc 584 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → ((invg𝑊)‘𝑥) ∈ (𝑁‘(𝐵𝑉)))
19130, 24, 93, 91, 99, 92, 23, 28ellspds 33318 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (((invg𝑊)‘𝑥) ∈ (𝑁‘(𝐵𝑉)) ↔ ∃𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))(𝑏 finSupp (0g‘(Scalar‘𝑊)) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣))))))
192191biimpa 476 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ ((invg𝑊)‘𝑥) ∈ (𝑁‘(𝐵𝑉))) → ∃𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))(𝑏 finSupp (0g‘(Scalar‘𝑊)) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))))
193190, 192syldan 591 . . . . . . 7 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → ∃𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))(𝑏 finSupp (0g‘(Scalar‘𝑊)) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))))
194193ad3antrrr 730 . . . . . 6 (((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) → ∃𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))(𝑏 finSupp (0g‘(Scalar‘𝑊)) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))))
195181, 194r19.29a 3137 . . . . 5 (((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) → 𝑥 = 0 )
196195anasss 466 . . . 4 ((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ (𝑎 finSupp (0g‘(Scalar‘𝑊)) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣))))) → 𝑥 = 0 )
19730, 24, 93, 91, 99, 92, 23, 122ellspds 33318 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝑥 ∈ (𝑁𝑉) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)(𝑎 finSupp (0g‘(Scalar‘𝑊)) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣))))))
198197biimpa 476 . . . . 5 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ (𝑁𝑉)) → ∃𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)(𝑎 finSupp (0g‘(Scalar‘𝑊)) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))))
199127, 198syldan 591 . . . 4 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → ∃𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)(𝑎 finSupp (0g‘(Scalar‘𝑊)) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))))
200196, 199r19.29a 3137 . . 3 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → 𝑥 = 0 )
20129, 24, 300ellsp 33319 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑉 ⊆ (Base‘𝑊)) → 0 ∈ (𝑁𝑉))
20223, 122, 201syl2anc 584 . . . 4 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 0 ∈ (𝑁𝑉))
20332, 202elind 4153 . . 3 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 0 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉)))
204200, 203eqsnd 4784 . 2 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉)) = { 0 })
2052043impa 1109 1 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑉𝐵) → ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉)) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3438  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286  {csn 4579   class class class wbr 5095  cmpt 5176   × cxp 5621  cres 5625   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760   finSupp cfsupp 9270  Basecbs 17138  +gcplusg 17179  Scalarcsca 17182   ·𝑠 cvsca 17183  0gc0g 17361   Σg cgsu 17362  Mndcmnd 18626  Grpcgrp 18830  invgcminusg 18831  SubGrpcsubg 19017  CMndccmn 19677  LModclmod 20781  LSubSpclss 20852  LSpanclspn 20892  LBasisclbs 20996  LVecclvec 21024  LIndSclinds 21730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-nzr 20416  df-subrg 20473  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lmhm 20944  df-lbs 20997  df-lvec 21025  df-sra 21095  df-rgmod 21096  df-dsmm 21657  df-frlm 21672  df-uvc 21708  df-lindf 21731  df-linds 21732
This theorem is referenced by:  dimkerim  33602
  Copyright terms: Public domain W3C validator