Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lbsdiflsp0 Structured version   Visualization version   GIF version

Theorem lbsdiflsp0 33666
Description: The linear spans of two disjunct independent sets only have a trivial intersection. This can be seen as the opposite direction of lindsun 33665. (Contributed by Thierry Arnoux, 17-May-2023.)
Hypotheses
Ref Expression
lbsdiflsp0.j 𝐽 = (LBasis‘𝑊)
lbsdiflsp0.n 𝑁 = (LSpan‘𝑊)
lbsdiflsp0.1 0 = (0g𝑊)
Assertion
Ref Expression
lbsdiflsp0 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑉𝐵) → ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉)) = { 0 })

Proof of Theorem lbsdiflsp0
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp-4r 783 . . . . . . . . 9 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣))))
2 fveq2 6876 . . . . . . . . . . . 12 (𝑢 = 𝑣 → (𝑎𝑢) = (𝑎𝑣))
3 id 22 . . . . . . . . . . . 12 (𝑢 = 𝑣𝑢 = 𝑣)
42, 3oveq12d 7423 . . . . . . . . . . 11 (𝑢 = 𝑣 → ((𝑎𝑢)( ·𝑠𝑊)𝑢) = ((𝑎𝑣)( ·𝑠𝑊)𝑣))
54cbvmptv 5225 . . . . . . . . . 10 (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢)) = (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣))
65oveq2i 7416 . . . . . . . . 9 (𝑊 Σg (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢))) = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))
71, 6eqtr4di 2788 . . . . . . . 8 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑥 = (𝑊 Σg (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢))))
8 simp-4r 783 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑎 finSupp (0g‘(Scalar‘𝑊)))
9 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑏 finSupp (0g‘(Scalar‘𝑊)))
10 simp-8l 790 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑊 ∈ LVec)
11 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝐵𝐽)
1211ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝐵𝐽)
13 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝑉𝐵)
1413ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑉𝐵)
15 simp-5r 785 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉))
16 fvexd 6891 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (Base‘(Scalar‘𝑊)) ∈ V)
1711, 13ssexd 5294 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝑉 ∈ V)
1816, 17elmapd 8854 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉) ↔ 𝑎:𝑉⟶(Base‘(Scalar‘𝑊))))
1918biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) → 𝑎:𝑉⟶(Base‘(Scalar‘𝑊)))
2010, 12, 14, 15, 19syl1111anc 840 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑎:𝑉⟶(Base‘(Scalar‘𝑊)))
21 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉)))
22 lveclmod 21064 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2322ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝑊 ∈ LMod)
24 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (Base‘𝑊) = (Base‘𝑊)
25 lbsdiflsp0.j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝐽 = (LBasis‘𝑊)
2624, 25lbsss 21035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐵𝐽𝐵 ⊆ (Base‘𝑊))
2726ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝐵 ⊆ (Base‘𝑊))
2827ssdifssd 4122 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝐵𝑉) ⊆ (Base‘𝑊))
29 lbsdiflsp0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 = (0g𝑊)
30 lbsdiflsp0.n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑁 = (LSpan‘𝑊)
3129, 24, 300ellsp 33384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑊 ∈ LMod ∧ (𝐵𝑉) ⊆ (Base‘𝑊)) → 0 ∈ (𝑁‘(𝐵𝑉)))
3223, 28, 31syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 0 ∈ (𝑁‘(𝐵𝑉)))
3332elfvexd 6915 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝐵𝑉) ∈ V)
3416, 33elmapd 8854 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉)) ↔ 𝑏:(𝐵𝑉)⟶(Base‘(Scalar‘𝑊))))
3534biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) → 𝑏:(𝐵𝑉)⟶(Base‘(Scalar‘𝑊)))
3610, 12, 14, 21, 35syl1111anc 840 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑏:(𝐵𝑉)⟶(Base‘(Scalar‘𝑊)))
37 disjdif 4447 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑉 ∩ (𝐵𝑉)) = ∅
3837a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → (𝑉 ∩ (𝐵𝑉)) = ∅)
3920, 36, 38fun2d 6742 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → (𝑎𝑏):(𝑉 ∪ (𝐵𝑉))⟶(Base‘(Scalar‘𝑊)))
40 undif 4457 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑉𝐵 ↔ (𝑉 ∪ (𝐵𝑉)) = 𝐵)
4114, 40sylib 218 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → (𝑉 ∪ (𝐵𝑉)) = 𝐵)
4241feq2d 6692 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → ((𝑎𝑏):(𝑉 ∪ (𝐵𝑉))⟶(Base‘(Scalar‘𝑊)) ↔ (𝑎𝑏):𝐵⟶(Base‘(Scalar‘𝑊))))
4339, 42mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → (𝑎𝑏):𝐵⟶(Base‘(Scalar‘𝑊)))
4443ffund 6710 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → Fun (𝑎𝑏))
4544fsuppunbi 9401 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → ((𝑎𝑏) finSupp (0g‘(Scalar‘𝑊)) ↔ (𝑎 finSupp (0g‘(Scalar‘𝑊)) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊)))))
468, 9, 45mpbir2and 713 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → (𝑎𝑏) finSupp (0g‘(Scalar‘𝑊)))
4746adantr 480 . . . . . . . . . . . . . . . . . 18 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑎𝑏) finSupp (0g‘(Scalar‘𝑊)))
48 eqid 2735 . . . . . . . . . . . . . . . . . . . 20 (+g𝑊) = (+g𝑊)
49 lmodcmn 20867 . . . . . . . . . . . . . . . . . . . . . 22 (𝑊 ∈ LMod → 𝑊 ∈ CMnd)
5022, 49syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑊 ∈ LVec → 𝑊 ∈ CMnd)
5150ad9antr 742 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑊 ∈ CMnd)
5211ad7antr 738 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝐵𝐽)
5323ad8antr 740 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → 𝑊 ∈ LMod)
54 elmapfn 8879 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉) → 𝑎 Fn 𝑉)
5554ad6antlr 737 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑎 Fn 𝑉)
5655adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → 𝑎 Fn 𝑉)
57 elmapfn 8879 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉)) → 𝑏 Fn (𝐵𝑉))
5857ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑏 Fn (𝐵𝑉))
5958adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → 𝑏 Fn (𝐵𝑉))
6037a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → (𝑉 ∩ (𝐵𝑉)) = ∅)
61 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → 𝑢𝑉)
62 fvun1 6970 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 Fn 𝑉𝑏 Fn (𝐵𝑉) ∧ ((𝑉 ∩ (𝐵𝑉)) = ∅ ∧ 𝑢𝑉)) → ((𝑎𝑏)‘𝑢) = (𝑎𝑢))
6356, 59, 60, 61, 62syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → ((𝑎𝑏)‘𝑢) = (𝑎𝑢))
6463adantlr 715 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢𝑉) → ((𝑎𝑏)‘𝑢) = (𝑎𝑢))
6520ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢𝑉) → 𝑎:𝑉⟶(Base‘(Scalar‘𝑊)))
66 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢𝑉) → 𝑢𝑉)
6765, 66ffvelcdmd 7075 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢𝑉) → (𝑎𝑢) ∈ (Base‘(Scalar‘𝑊)))
6864, 67eqeltrd 2834 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢𝑉) → ((𝑎𝑏)‘𝑢) ∈ (Base‘(Scalar‘𝑊)))
6955adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢 ∈ (𝐵𝑉)) → 𝑎 Fn 𝑉)
7058adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢 ∈ (𝐵𝑉)) → 𝑏 Fn (𝐵𝑉))
7137a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢 ∈ (𝐵𝑉)) → (𝑉 ∩ (𝐵𝑉)) = ∅)
72 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢 ∈ (𝐵𝑉)) → 𝑢 ∈ (𝐵𝑉))
73 fvun2 6971 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 Fn 𝑉𝑏 Fn (𝐵𝑉) ∧ ((𝑉 ∩ (𝐵𝑉)) = ∅ ∧ 𝑢 ∈ (𝐵𝑉))) → ((𝑎𝑏)‘𝑢) = (𝑏𝑢))
7469, 70, 71, 72, 73syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢 ∈ (𝐵𝑉)) → ((𝑎𝑏)‘𝑢) = (𝑏𝑢))
7574adantlr 715 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢 ∈ (𝐵𝑉)) → ((𝑎𝑏)‘𝑢) = (𝑏𝑢))
7636ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢 ∈ (𝐵𝑉)) → 𝑏:(𝐵𝑉)⟶(Base‘(Scalar‘𝑊)))
77 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢 ∈ (𝐵𝑉)) → 𝑢 ∈ (𝐵𝑉))
7876, 77ffvelcdmd 7075 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢 ∈ (𝐵𝑉)) → (𝑏𝑢) ∈ (Base‘(Scalar‘𝑊)))
7975, 78eqeltrd 2834 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢 ∈ (𝐵𝑉)) → ((𝑎𝑏)‘𝑢) ∈ (Base‘(Scalar‘𝑊)))
80 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → 𝑢𝐵)
8140biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑉𝐵 → (𝑉 ∪ (𝐵𝑉)) = 𝐵)
8281ad8antlr 741 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑉 ∪ (𝐵𝑉)) = 𝐵)
8382eqcomd 2741 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝐵 = (𝑉 ∪ (𝐵𝑉)))
8483adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → 𝐵 = (𝑉 ∪ (𝐵𝑉)))
8580, 84eleqtrd 2836 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → 𝑢 ∈ (𝑉 ∪ (𝐵𝑉)))
86 elun 4128 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 ∈ (𝑉 ∪ (𝐵𝑉)) ↔ (𝑢𝑉𝑢 ∈ (𝐵𝑉)))
8785, 86sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → (𝑢𝑉𝑢 ∈ (𝐵𝑉)))
8868, 79, 87mpjaodan 960 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → ((𝑎𝑏)‘𝑢) ∈ (Base‘(Scalar‘𝑊)))
8927ad8antr 740 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → 𝐵 ⊆ (Base‘𝑊))
9089, 80sseldd 3959 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → 𝑢 ∈ (Base‘𝑊))
91 eqid 2735 . . . . . . . . . . . . . . . . . . . . . 22 (Scalar‘𝑊) = (Scalar‘𝑊)
92 eqid 2735 . . . . . . . . . . . . . . . . . . . . . 22 ( ·𝑠𝑊) = ( ·𝑠𝑊)
93 eqid 2735 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
9424, 91, 92, 93lmodvscl 20835 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ LMod ∧ ((𝑎𝑏)‘𝑢) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑢 ∈ (Base‘𝑊)) → (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢) ∈ (Base‘𝑊))
9553, 88, 90, 94syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢) ∈ (Base‘𝑊))
96 simp-9l 792 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑊 ∈ LVec)
9796, 22syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑊 ∈ LMod)
98 eqidd 2736 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (Scalar‘𝑊) = (Scalar‘𝑊))
99 eqid 2735 . . . . . . . . . . . . . . . . . . . . 21 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
10043adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑎𝑏):𝐵⟶(Base‘(Scalar‘𝑊)))
101100feqmptd 6947 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑎𝑏) = (𝑢𝐵 ↦ ((𝑎𝑏)‘𝑢)))
102101, 47eqbrtrrd 5143 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑢𝐵 ↦ ((𝑎𝑏)‘𝑢)) finSupp (0g‘(Scalar‘𝑊)))
10352, 97, 98, 24, 88, 90, 29, 99, 92, 102mptscmfsupp0 20884 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)) finSupp 0 )
10437a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑉 ∩ (𝐵𝑉)) = ∅)
10524, 29, 48, 51, 52, 95, 103, 104, 83gsumsplit2 19910 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = ((𝑊 Σg (𝑢𝑉 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))(+g𝑊)(𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))))
10663oveq1d 7420 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢) = ((𝑎𝑢)( ·𝑠𝑊)𝑢))
107106mpteq2dva 5214 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑢𝑉 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)) = (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢)))
108107oveq2d 7421 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑊 Σg (𝑢𝑉 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = (𝑊 Σg (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢))))
10974oveq1d 7420 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢 ∈ (𝐵𝑉)) → (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢) = ((𝑏𝑢)( ·𝑠𝑊)𝑢))
110109mpteq2dva 5214 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑢 ∈ (𝐵𝑉) ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)) = (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢)))
111110oveq2d 7421 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = (𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢))))
112108, 111oveq12d 7423 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((𝑊 Σg (𝑢𝑉 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))(+g𝑊)(𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))) = ((𝑊 Σg (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢)))(+g𝑊)(𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢)))))
113 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣))))
114 fveq2 6876 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑢 = 𝑣 → (𝑏𝑢) = (𝑏𝑣))
115114, 3oveq12d 7423 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = 𝑣 → ((𝑏𝑢)( ·𝑠𝑊)𝑢) = ((𝑏𝑣)( ·𝑠𝑊)𝑣))
116115cbvmptv 5225 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢)) = (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣))
117116oveq2i 7416 . . . . . . . . . . . . . . . . . . . . . 22 (𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢))) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))
118113, 117eqtr4di 2788 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢))))
1197, 118oveq12d 7423 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑥(+g𝑊)((invg𝑊)‘𝑥)) = ((𝑊 Σg (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢)))(+g𝑊)(𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢)))))
120 lmodgrp 20824 . . . . . . . . . . . . . . . . . . . . . 22 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
12196, 22, 1203syl 18 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑊 ∈ Grp)
12213, 27sstrd 3969 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝑉 ⊆ (Base‘𝑊))
12324, 30lspssv 20940 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑊 ∈ LMod ∧ 𝑉 ⊆ (Base‘𝑊)) → (𝑁𝑉) ⊆ (Base‘𝑊))
12423, 122, 123syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝑁𝑉) ⊆ (Base‘𝑊))
125124ad7antr 738 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑁𝑉) ⊆ (Base‘𝑊))
126 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉)))
127126elin2d 4180 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → 𝑥 ∈ (𝑁𝑉))
128127ad6antr 736 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑥 ∈ (𝑁𝑉))
129125, 128sseldd 3959 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑥 ∈ (Base‘𝑊))
130 eqid 2735 . . . . . . . . . . . . . . . . . . . . . 22 (invg𝑊) = (invg𝑊)
13124, 48, 29, 130grprinv 18973 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(+g𝑊)((invg𝑊)‘𝑥)) = 0 )
132121, 129, 131syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑥(+g𝑊)((invg𝑊)‘𝑥)) = 0 )
133112, 119, 1323eqtr2d 2776 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((𝑊 Σg (𝑢𝑉 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))(+g𝑊)(𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))) = 0 )
134105, 133eqtrd 2770 . . . . . . . . . . . . . . . . . 18 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = 0 )
135 breq1 5122 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = (𝑎𝑏) → (𝑐 finSupp (0g‘(Scalar‘𝑊)) ↔ (𝑎𝑏) finSupp (0g‘(Scalar‘𝑊))))
136 fveq1 6875 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = (𝑎𝑏) → (𝑐𝑢) = ((𝑎𝑏)‘𝑢))
137136oveq1d 7420 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = (𝑎𝑏) → ((𝑐𝑢)( ·𝑠𝑊)𝑢) = (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))
138137mpteq2dv 5215 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = (𝑎𝑏) → (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢)) = (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))
139138oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = (𝑎𝑏) → (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))))
140139eqeq1d 2737 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = (𝑎𝑏) → ((𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ↔ (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = 0 ))
141135, 140anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = (𝑎𝑏) → ((𝑐 finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ) ↔ ((𝑎𝑏) finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = 0 )))
142 eqeq1 2739 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = (𝑎𝑏) → (𝑐 = (𝐵 × {(0g‘(Scalar‘𝑊))}) ↔ (𝑎𝑏) = (𝐵 × {(0g‘(Scalar‘𝑊))})))
143141, 142imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑐 = (𝑎𝑏) → (((𝑐 finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → 𝑐 = (𝐵 × {(0g‘(Scalar‘𝑊))})) ↔ (((𝑎𝑏) finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → (𝑎𝑏) = (𝐵 × {(0g‘(Scalar‘𝑊))}))))
14425lbslinds 21793 . . . . . . . . . . . . . . . . . . . . . 22 𝐽 ⊆ (LIndS‘𝑊)
145144, 11sselid 3956 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝐵 ∈ (LIndS‘𝑊))
14624, 93, 91, 92, 29, 99islinds5 33382 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑊 ∈ LMod ∧ 𝐵 ⊆ (Base‘𝑊)) → (𝐵 ∈ (LIndS‘𝑊) ↔ ∀𝑐 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝐵)((𝑐 finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → 𝑐 = (𝐵 × {(0g‘(Scalar‘𝑊))}))))
147146biimpa 476 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ LMod ∧ 𝐵 ⊆ (Base‘𝑊)) ∧ 𝐵 ∈ (LIndS‘𝑊)) → ∀𝑐 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝐵)((𝑐 finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → 𝑐 = (𝐵 × {(0g‘(Scalar‘𝑊))})))
14823, 27, 145, 147syl21anc 837 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → ∀𝑐 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝐵)((𝑐 finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → 𝑐 = (𝐵 × {(0g‘(Scalar‘𝑊))})))
149148ad7antr 738 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ∀𝑐 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝐵)((𝑐 finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → 𝑐 = (𝐵 × {(0g‘(Scalar‘𝑊))})))
150 fvexd 6891 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (Base‘(Scalar‘𝑊)) ∈ V)
151150, 52elmapd 8854 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((𝑎𝑏) ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝐵) ↔ (𝑎𝑏):𝐵⟶(Base‘(Scalar‘𝑊))))
152100, 151mpbird 257 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑎𝑏) ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝐵))
153143, 149, 152rspcdva 3602 . . . . . . . . . . . . . . . . . 18 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (((𝑎𝑏) finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → (𝑎𝑏) = (𝐵 × {(0g‘(Scalar‘𝑊))})))
15447, 134, 153mp2and 699 . . . . . . . . . . . . . . . . 17 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑎𝑏) = (𝐵 × {(0g‘(Scalar‘𝑊))}))
155154reseq1d 5965 . . . . . . . . . . . . . . . 16 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((𝑎𝑏) ↾ 𝑉) = ((𝐵 × {(0g‘(Scalar‘𝑊))}) ↾ 𝑉))
156 fnunres1 6650 . . . . . . . . . . . . . . . . 17 ((𝑎 Fn 𝑉𝑏 Fn (𝐵𝑉) ∧ (𝑉 ∩ (𝐵𝑉)) = ∅) → ((𝑎𝑏) ↾ 𝑉) = 𝑎)
15755, 58, 104, 156syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((𝑎𝑏) ↾ 𝑉) = 𝑎)
158 xpssres 6005 . . . . . . . . . . . . . . . . 17 (𝑉𝐵 → ((𝐵 × {(0g‘(Scalar‘𝑊))}) ↾ 𝑉) = (𝑉 × {(0g‘(Scalar‘𝑊))}))
159158ad8antlr 741 . . . . . . . . . . . . . . . 16 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((𝐵 × {(0g‘(Scalar‘𝑊))}) ↾ 𝑉) = (𝑉 × {(0g‘(Scalar‘𝑊))}))
160155, 157, 1593eqtr3d 2778 . . . . . . . . . . . . . . 15 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑎 = (𝑉 × {(0g‘(Scalar‘𝑊))}))
161160adantr 480 . . . . . . . . . . . . . 14 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → 𝑎 = (𝑉 × {(0g‘(Scalar‘𝑊))}))
162161fveq1d 6878 . . . . . . . . . . . . 13 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → (𝑎𝑢) = ((𝑉 × {(0g‘(Scalar‘𝑊))})‘𝑢))
163 fvex 6889 . . . . . . . . . . . . . . 15 (0g‘(Scalar‘𝑊)) ∈ V
164163fvconst2 7196 . . . . . . . . . . . . . 14 (𝑢𝑉 → ((𝑉 × {(0g‘(Scalar‘𝑊))})‘𝑢) = (0g‘(Scalar‘𝑊)))
16561, 164syl 17 . . . . . . . . . . . . 13 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → ((𝑉 × {(0g‘(Scalar‘𝑊))})‘𝑢) = (0g‘(Scalar‘𝑊)))
166162, 165eqtrd 2770 . . . . . . . . . . . 12 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → (𝑎𝑢) = (0g‘(Scalar‘𝑊)))
167166oveq1d 7420 . . . . . . . . . . 11 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → ((𝑎𝑢)( ·𝑠𝑊)𝑢) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑢))
168122ad8antr 740 . . . . . . . . . . . . 13 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → 𝑉 ⊆ (Base‘𝑊))
169168, 61sseldd 3959 . . . . . . . . . . . 12 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → 𝑢 ∈ (Base‘𝑊))
17024, 91, 92, 99, 29lmod0vs 20852 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑢 ∈ (Base‘𝑊)) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑢) = 0 )
17197, 169, 170syl2an2r 685 . . . . . . . . . . 11 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑢) = 0 )
172167, 171eqtrd 2770 . . . . . . . . . 10 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → ((𝑎𝑢)( ·𝑠𝑊)𝑢) = 0 )
173172mpteq2dva 5214 . . . . . . . . 9 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢)) = (𝑢𝑉0 ))
174173oveq2d 7421 . . . . . . . 8 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑊 Σg (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢))) = (𝑊 Σg (𝑢𝑉0 )))
175 cmnmnd 19778 . . . . . . . . . 10 (𝑊 ∈ CMnd → 𝑊 ∈ Mnd)
17651, 175syl 17 . . . . . . . . 9 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑊 ∈ Mnd)
177128elfvexd 6915 . . . . . . . . 9 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑉 ∈ V)
17829gsumz 18814 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 𝑉 ∈ V) → (𝑊 Σg (𝑢𝑉0 )) = 0 )
179176, 177, 178syl2anc 584 . . . . . . . 8 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑊 Σg (𝑢𝑉0 )) = 0 )
1807, 174, 1793eqtrd 2774 . . . . . . 7 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑥 = 0 )
181180anasss 466 . . . . . 6 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ (𝑏 finSupp (0g‘(Scalar‘𝑊)) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣))))) → 𝑥 = 0 )
182 eqid 2735 . . . . . . . . . . . . 13 (LSubSp‘𝑊) = (LSubSp‘𝑊)
18324, 182, 30lspcl 20933 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝐵𝑉) ⊆ (Base‘𝑊)) → (𝑁‘(𝐵𝑉)) ∈ (LSubSp‘𝑊))
18423, 28, 183syl2anc 584 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝑁‘(𝐵𝑉)) ∈ (LSubSp‘𝑊))
185184adantr 480 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → (𝑁‘(𝐵𝑉)) ∈ (LSubSp‘𝑊))
186182lsssubg 20914 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ (𝑁‘(𝐵𝑉)) ∈ (LSubSp‘𝑊)) → (𝑁‘(𝐵𝑉)) ∈ (SubGrp‘𝑊))
18723, 185, 186syl2an2r 685 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → (𝑁‘(𝐵𝑉)) ∈ (SubGrp‘𝑊))
188126elin1d 4179 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → 𝑥 ∈ (𝑁‘(𝐵𝑉)))
189130subginvcl 19118 . . . . . . . . 9 (((𝑁‘(𝐵𝑉)) ∈ (SubGrp‘𝑊) ∧ 𝑥 ∈ (𝑁‘(𝐵𝑉))) → ((invg𝑊)‘𝑥) ∈ (𝑁‘(𝐵𝑉)))
190187, 188, 189syl2anc 584 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → ((invg𝑊)‘𝑥) ∈ (𝑁‘(𝐵𝑉)))
19130, 24, 93, 91, 99, 92, 23, 28ellspds 33383 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (((invg𝑊)‘𝑥) ∈ (𝑁‘(𝐵𝑉)) ↔ ∃𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))(𝑏 finSupp (0g‘(Scalar‘𝑊)) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣))))))
192191biimpa 476 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ ((invg𝑊)‘𝑥) ∈ (𝑁‘(𝐵𝑉))) → ∃𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))(𝑏 finSupp (0g‘(Scalar‘𝑊)) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))))
193190, 192syldan 591 . . . . . . 7 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → ∃𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))(𝑏 finSupp (0g‘(Scalar‘𝑊)) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))))
194193ad3antrrr 730 . . . . . 6 (((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) → ∃𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))(𝑏 finSupp (0g‘(Scalar‘𝑊)) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))))
195181, 194r19.29a 3148 . . . . 5 (((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) → 𝑥 = 0 )
196195anasss 466 . . . 4 ((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ (𝑎 finSupp (0g‘(Scalar‘𝑊)) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣))))) → 𝑥 = 0 )
19730, 24, 93, 91, 99, 92, 23, 122ellspds 33383 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝑥 ∈ (𝑁𝑉) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)(𝑎 finSupp (0g‘(Scalar‘𝑊)) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣))))))
198197biimpa 476 . . . . 5 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ (𝑁𝑉)) → ∃𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)(𝑎 finSupp (0g‘(Scalar‘𝑊)) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))))
199127, 198syldan 591 . . . 4 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → ∃𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)(𝑎 finSupp (0g‘(Scalar‘𝑊)) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))))
200196, 199r19.29a 3148 . . 3 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → 𝑥 = 0 )
20129, 24, 300ellsp 33384 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑉 ⊆ (Base‘𝑊)) → 0 ∈ (𝑁𝑉))
20223, 122, 201syl2anc 584 . . . 4 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 0 ∈ (𝑁𝑉))
20332, 202elind 4175 . . 3 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 0 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉)))
204200, 203eqsnd 4806 . 2 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉)) = { 0 })
2052043impa 1109 1 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑉𝐵) → ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉)) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308  {csn 4601   class class class wbr 5119  cmpt 5201   × cxp 5652  cres 5656   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  m cmap 8840   finSupp cfsupp 9373  Basecbs 17228  +gcplusg 17271  Scalarcsca 17274   ·𝑠 cvsca 17275  0gc0g 17453   Σg cgsu 17454  Mndcmnd 18712  Grpcgrp 18916  invgcminusg 18917  SubGrpcsubg 19103  CMndccmn 19761  LModclmod 20817  LSubSpclss 20888  LSpanclspn 20928  LBasisclbs 21032  LVecclvec 21060  LIndSclinds 21765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-nzr 20473  df-subrg 20530  df-lmod 20819  df-lss 20889  df-lsp 20929  df-lmhm 20980  df-lbs 21033  df-lvec 21061  df-sra 21131  df-rgmod 21132  df-dsmm 21692  df-frlm 21707  df-uvc 21743  df-lindf 21766  df-linds 21767
This theorem is referenced by:  dimkerim  33667
  Copyright terms: Public domain W3C validator