Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lbsdiflsp0 Structured version   Visualization version   GIF version

Theorem lbsdiflsp0 31609
Description: The linear spans of two disjunct independent sets only have a trivial intersection. This can be seen as the opposite direction of lindsun 31608. (Contributed by Thierry Arnoux, 17-May-2023.)
Hypotheses
Ref Expression
lbsdiflsp0.j 𝐽 = (LBasis‘𝑊)
lbsdiflsp0.n 𝑁 = (LSpan‘𝑊)
lbsdiflsp0.1 0 = (0g𝑊)
Assertion
Ref Expression
lbsdiflsp0 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑉𝐵) → ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉)) = { 0 })

Proof of Theorem lbsdiflsp0
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp-4r 780 . . . . . . . . 9 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣))))
2 fveq2 6756 . . . . . . . . . . . 12 (𝑢 = 𝑣 → (𝑎𝑢) = (𝑎𝑣))
3 id 22 . . . . . . . . . . . 12 (𝑢 = 𝑣𝑢 = 𝑣)
42, 3oveq12d 7273 . . . . . . . . . . 11 (𝑢 = 𝑣 → ((𝑎𝑢)( ·𝑠𝑊)𝑢) = ((𝑎𝑣)( ·𝑠𝑊)𝑣))
54cbvmptv 5183 . . . . . . . . . 10 (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢)) = (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣))
65oveq2i 7266 . . . . . . . . 9 (𝑊 Σg (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢))) = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))
71, 6eqtr4di 2797 . . . . . . . 8 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑥 = (𝑊 Σg (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢))))
8 simp-4r 780 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑎 finSupp (0g‘(Scalar‘𝑊)))
9 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑏 finSupp (0g‘(Scalar‘𝑊)))
10 simp-8l 787 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑊 ∈ LVec)
11 simplr 765 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝐵𝐽)
1211ad6antr 732 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝐵𝐽)
13 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝑉𝐵)
1413ad6antr 732 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑉𝐵)
15 simp-5r 782 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉))
16 fvexd 6771 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (Base‘(Scalar‘𝑊)) ∈ V)
1711, 13ssexd 5243 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝑉 ∈ V)
1816, 17elmapd 8587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉) ↔ 𝑎:𝑉⟶(Base‘(Scalar‘𝑊))))
1918biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) → 𝑎:𝑉⟶(Base‘(Scalar‘𝑊)))
2010, 12, 14, 15, 19syl1111anc 836 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑎:𝑉⟶(Base‘(Scalar‘𝑊)))
21 simplr 765 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉)))
22 lveclmod 20283 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2322ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝑊 ∈ LMod)
24 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (Base‘𝑊) = (Base‘𝑊)
25 lbsdiflsp0.j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝐽 = (LBasis‘𝑊)
2624, 25lbsss 20254 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐵𝐽𝐵 ⊆ (Base‘𝑊))
2726ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝐵 ⊆ (Base‘𝑊))
2827ssdifssd 4073 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝐵𝑉) ⊆ (Base‘𝑊))
29 lbsdiflsp0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 = (0g𝑊)
30 lbsdiflsp0.n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑁 = (LSpan‘𝑊)
3129, 24, 300ellsp 31467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑊 ∈ LMod ∧ (𝐵𝑉) ⊆ (Base‘𝑊)) → 0 ∈ (𝑁‘(𝐵𝑉)))
3223, 28, 31syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 0 ∈ (𝑁‘(𝐵𝑉)))
3332elfvexd 6790 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝐵𝑉) ∈ V)
3416, 33elmapd 8587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉)) ↔ 𝑏:(𝐵𝑉)⟶(Base‘(Scalar‘𝑊))))
3534biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) → 𝑏:(𝐵𝑉)⟶(Base‘(Scalar‘𝑊)))
3610, 12, 14, 21, 35syl1111anc 836 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → 𝑏:(𝐵𝑉)⟶(Base‘(Scalar‘𝑊)))
37 disjdif 4402 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑉 ∩ (𝐵𝑉)) = ∅
3837a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → (𝑉 ∩ (𝐵𝑉)) = ∅)
3920, 36, 38fun2d 6622 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → (𝑎𝑏):(𝑉 ∪ (𝐵𝑉))⟶(Base‘(Scalar‘𝑊)))
40 undif 4412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑉𝐵 ↔ (𝑉 ∪ (𝐵𝑉)) = 𝐵)
4114, 40sylib 217 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → (𝑉 ∪ (𝐵𝑉)) = 𝐵)
4241feq2d 6570 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → ((𝑎𝑏):(𝑉 ∪ (𝐵𝑉))⟶(Base‘(Scalar‘𝑊)) ↔ (𝑎𝑏):𝐵⟶(Base‘(Scalar‘𝑊))))
4339, 42mpbid 231 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → (𝑎𝑏):𝐵⟶(Base‘(Scalar‘𝑊)))
4443ffund 6588 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → Fun (𝑎𝑏))
4544fsuppunbi 9079 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → ((𝑎𝑏) finSupp (0g‘(Scalar‘𝑊)) ↔ (𝑎 finSupp (0g‘(Scalar‘𝑊)) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊)))))
468, 9, 45mpbir2and 709 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) → (𝑎𝑏) finSupp (0g‘(Scalar‘𝑊)))
4746adantr 480 . . . . . . . . . . . . . . . . . 18 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑎𝑏) finSupp (0g‘(Scalar‘𝑊)))
48 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 (+g𝑊) = (+g𝑊)
49 lmodcmn 20086 . . . . . . . . . . . . . . . . . . . . . 22 (𝑊 ∈ LMod → 𝑊 ∈ CMnd)
5022, 49syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑊 ∈ LVec → 𝑊 ∈ CMnd)
5150ad9antr 738 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑊 ∈ CMnd)
5211ad7antr 734 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝐵𝐽)
5323ad8antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → 𝑊 ∈ LMod)
54 elmapfn 8611 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉) → 𝑎 Fn 𝑉)
5554ad6antlr 733 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑎 Fn 𝑉)
5655adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → 𝑎 Fn 𝑉)
57 elmapfn 8611 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉)) → 𝑏 Fn (𝐵𝑉))
5857ad3antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑏 Fn (𝐵𝑉))
5958adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → 𝑏 Fn (𝐵𝑉))
6037a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → (𝑉 ∩ (𝐵𝑉)) = ∅)
61 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → 𝑢𝑉)
62 fvun1 6841 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 Fn 𝑉𝑏 Fn (𝐵𝑉) ∧ ((𝑉 ∩ (𝐵𝑉)) = ∅ ∧ 𝑢𝑉)) → ((𝑎𝑏)‘𝑢) = (𝑎𝑢))
6356, 59, 60, 61, 62syl112anc 1372 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → ((𝑎𝑏)‘𝑢) = (𝑎𝑢))
6463adantlr 711 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢𝑉) → ((𝑎𝑏)‘𝑢) = (𝑎𝑢))
6520ad3antrrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢𝑉) → 𝑎:𝑉⟶(Base‘(Scalar‘𝑊)))
66 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢𝑉) → 𝑢𝑉)
6765, 66ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢𝑉) → (𝑎𝑢) ∈ (Base‘(Scalar‘𝑊)))
6864, 67eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢𝑉) → ((𝑎𝑏)‘𝑢) ∈ (Base‘(Scalar‘𝑊)))
6955adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢 ∈ (𝐵𝑉)) → 𝑎 Fn 𝑉)
7058adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢 ∈ (𝐵𝑉)) → 𝑏 Fn (𝐵𝑉))
7137a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢 ∈ (𝐵𝑉)) → (𝑉 ∩ (𝐵𝑉)) = ∅)
72 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢 ∈ (𝐵𝑉)) → 𝑢 ∈ (𝐵𝑉))
73 fvun2 6842 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 Fn 𝑉𝑏 Fn (𝐵𝑉) ∧ ((𝑉 ∩ (𝐵𝑉)) = ∅ ∧ 𝑢 ∈ (𝐵𝑉))) → ((𝑎𝑏)‘𝑢) = (𝑏𝑢))
7469, 70, 71, 72, 73syl112anc 1372 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢 ∈ (𝐵𝑉)) → ((𝑎𝑏)‘𝑢) = (𝑏𝑢))
7574adantlr 711 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢 ∈ (𝐵𝑉)) → ((𝑎𝑏)‘𝑢) = (𝑏𝑢))
7636ad3antrrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢 ∈ (𝐵𝑉)) → 𝑏:(𝐵𝑉)⟶(Base‘(Scalar‘𝑊)))
77 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢 ∈ (𝐵𝑉)) → 𝑢 ∈ (𝐵𝑉))
7876, 77ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢 ∈ (𝐵𝑉)) → (𝑏𝑢) ∈ (Base‘(Scalar‘𝑊)))
7975, 78eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) ∧ 𝑢 ∈ (𝐵𝑉)) → ((𝑎𝑏)‘𝑢) ∈ (Base‘(Scalar‘𝑊)))
80 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → 𝑢𝐵)
8140biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑉𝐵 → (𝑉 ∪ (𝐵𝑉)) = 𝐵)
8281ad8antlr 737 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑉 ∪ (𝐵𝑉)) = 𝐵)
8382eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝐵 = (𝑉 ∪ (𝐵𝑉)))
8483adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → 𝐵 = (𝑉 ∪ (𝐵𝑉)))
8580, 84eleqtrd 2841 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → 𝑢 ∈ (𝑉 ∪ (𝐵𝑉)))
86 elun 4079 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 ∈ (𝑉 ∪ (𝐵𝑉)) ↔ (𝑢𝑉𝑢 ∈ (𝐵𝑉)))
8785, 86sylib 217 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → (𝑢𝑉𝑢 ∈ (𝐵𝑉)))
8868, 79, 87mpjaodan 955 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → ((𝑎𝑏)‘𝑢) ∈ (Base‘(Scalar‘𝑊)))
8927ad8antr 736 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → 𝐵 ⊆ (Base‘𝑊))
9089, 80sseldd 3918 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → 𝑢 ∈ (Base‘𝑊))
91 eqid 2738 . . . . . . . . . . . . . . . . . . . . . 22 (Scalar‘𝑊) = (Scalar‘𝑊)
92 eqid 2738 . . . . . . . . . . . . . . . . . . . . . 22 ( ·𝑠𝑊) = ( ·𝑠𝑊)
93 eqid 2738 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
9424, 91, 92, 93lmodvscl 20055 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ LMod ∧ ((𝑎𝑏)‘𝑢) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑢 ∈ (Base‘𝑊)) → (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢) ∈ (Base‘𝑊))
9553, 88, 90, 94syl3anc 1369 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝐵) → (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢) ∈ (Base‘𝑊))
96 simp-9l 789 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑊 ∈ LVec)
9796, 22syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑊 ∈ LMod)
98 eqidd 2739 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (Scalar‘𝑊) = (Scalar‘𝑊))
99 eqid 2738 . . . . . . . . . . . . . . . . . . . . 21 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
10043adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑎𝑏):𝐵⟶(Base‘(Scalar‘𝑊)))
101100feqmptd 6819 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑎𝑏) = (𝑢𝐵 ↦ ((𝑎𝑏)‘𝑢)))
102101, 47eqbrtrrd 5094 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑢𝐵 ↦ ((𝑎𝑏)‘𝑢)) finSupp (0g‘(Scalar‘𝑊)))
10352, 97, 98, 24, 88, 90, 29, 99, 92, 102mptscmfsupp0 20103 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)) finSupp 0 )
10437a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑉 ∩ (𝐵𝑉)) = ∅)
10524, 29, 48, 51, 52, 95, 103, 104, 83gsumsplit2 19445 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = ((𝑊 Σg (𝑢𝑉 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))(+g𝑊)(𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))))
10663oveq1d 7270 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢) = ((𝑎𝑢)( ·𝑠𝑊)𝑢))
107106mpteq2dva 5170 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑢𝑉 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)) = (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢)))
108107oveq2d 7271 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑊 Σg (𝑢𝑉 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = (𝑊 Σg (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢))))
10974oveq1d 7270 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢 ∈ (𝐵𝑉)) → (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢) = ((𝑏𝑢)( ·𝑠𝑊)𝑢))
110109mpteq2dva 5170 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑢 ∈ (𝐵𝑉) ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)) = (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢)))
111110oveq2d 7271 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = (𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢))))
112108, 111oveq12d 7273 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((𝑊 Σg (𝑢𝑉 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))(+g𝑊)(𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))) = ((𝑊 Σg (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢)))(+g𝑊)(𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢)))))
113 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣))))
114 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑢 = 𝑣 → (𝑏𝑢) = (𝑏𝑣))
115114, 3oveq12d 7273 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = 𝑣 → ((𝑏𝑢)( ·𝑠𝑊)𝑢) = ((𝑏𝑣)( ·𝑠𝑊)𝑣))
116115cbvmptv 5183 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢)) = (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣))
117116oveq2i 7266 . . . . . . . . . . . . . . . . . . . . . 22 (𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢))) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))
118113, 117eqtr4di 2797 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢))))
1197, 118oveq12d 7273 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑥(+g𝑊)((invg𝑊)‘𝑥)) = ((𝑊 Σg (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢)))(+g𝑊)(𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ ((𝑏𝑢)( ·𝑠𝑊)𝑢)))))
120 lmodgrp 20045 . . . . . . . . . . . . . . . . . . . . . 22 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
12196, 22, 1203syl 18 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑊 ∈ Grp)
12213, 27sstrd 3927 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝑉 ⊆ (Base‘𝑊))
12324, 30lspssv 20160 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑊 ∈ LMod ∧ 𝑉 ⊆ (Base‘𝑊)) → (𝑁𝑉) ⊆ (Base‘𝑊))
12423, 122, 123syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝑁𝑉) ⊆ (Base‘𝑊))
125124ad7antr 734 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑁𝑉) ⊆ (Base‘𝑊))
126 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉)))
127126elin2d 4129 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → 𝑥 ∈ (𝑁𝑉))
128127ad6antr 732 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑥 ∈ (𝑁𝑉))
129125, 128sseldd 3918 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑥 ∈ (Base‘𝑊))
130 eqid 2738 . . . . . . . . . . . . . . . . . . . . . 22 (invg𝑊) = (invg𝑊)
13124, 48, 29, 130grprinv 18544 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(+g𝑊)((invg𝑊)‘𝑥)) = 0 )
132121, 129, 131syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑥(+g𝑊)((invg𝑊)‘𝑥)) = 0 )
133112, 119, 1323eqtr2d 2784 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((𝑊 Σg (𝑢𝑉 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))(+g𝑊)(𝑊 Σg (𝑢 ∈ (𝐵𝑉) ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))) = 0 )
134105, 133eqtrd 2778 . . . . . . . . . . . . . . . . . 18 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = 0 )
135 breq1 5073 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = (𝑎𝑏) → (𝑐 finSupp (0g‘(Scalar‘𝑊)) ↔ (𝑎𝑏) finSupp (0g‘(Scalar‘𝑊))))
136 fveq1 6755 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = (𝑎𝑏) → (𝑐𝑢) = ((𝑎𝑏)‘𝑢))
137136oveq1d 7270 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = (𝑎𝑏) → ((𝑐𝑢)( ·𝑠𝑊)𝑢) = (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))
138137mpteq2dv 5172 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = (𝑎𝑏) → (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢)) = (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢)))
139138oveq2d 7271 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = (𝑎𝑏) → (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))))
140139eqeq1d 2740 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = (𝑎𝑏) → ((𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ↔ (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = 0 ))
141135, 140anbi12d 630 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = (𝑎𝑏) → ((𝑐 finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ) ↔ ((𝑎𝑏) finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = 0 )))
142 eqeq1 2742 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = (𝑎𝑏) → (𝑐 = (𝐵 × {(0g‘(Scalar‘𝑊))}) ↔ (𝑎𝑏) = (𝐵 × {(0g‘(Scalar‘𝑊))})))
143141, 142imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑐 = (𝑎𝑏) → (((𝑐 finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → 𝑐 = (𝐵 × {(0g‘(Scalar‘𝑊))})) ↔ (((𝑎𝑏) finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → (𝑎𝑏) = (𝐵 × {(0g‘(Scalar‘𝑊))}))))
14425lbslinds 20950 . . . . . . . . . . . . . . . . . . . . . 22 𝐽 ⊆ (LIndS‘𝑊)
145144, 11sselid 3915 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 𝐵 ∈ (LIndS‘𝑊))
14624, 93, 91, 92, 29, 99islinds5 31465 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑊 ∈ LMod ∧ 𝐵 ⊆ (Base‘𝑊)) → (𝐵 ∈ (LIndS‘𝑊) ↔ ∀𝑐 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝐵)((𝑐 finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → 𝑐 = (𝐵 × {(0g‘(Scalar‘𝑊))}))))
147146biimpa 476 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ LMod ∧ 𝐵 ⊆ (Base‘𝑊)) ∧ 𝐵 ∈ (LIndS‘𝑊)) → ∀𝑐 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝐵)((𝑐 finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → 𝑐 = (𝐵 × {(0g‘(Scalar‘𝑊))})))
14823, 27, 145, 147syl21anc 834 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → ∀𝑐 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝐵)((𝑐 finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → 𝑐 = (𝐵 × {(0g‘(Scalar‘𝑊))})))
149148ad7antr 734 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ∀𝑐 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝐵)((𝑐 finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ ((𝑐𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → 𝑐 = (𝐵 × {(0g‘(Scalar‘𝑊))})))
150 fvexd 6771 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (Base‘(Scalar‘𝑊)) ∈ V)
151150, 52elmapd 8587 . . . . . . . . . . . . . . . . . . . 20 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((𝑎𝑏) ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝐵) ↔ (𝑎𝑏):𝐵⟶(Base‘(Scalar‘𝑊))))
152100, 151mpbird 256 . . . . . . . . . . . . . . . . . . 19 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑎𝑏) ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝐵))
153143, 149, 152rspcdva 3554 . . . . . . . . . . . . . . . . . 18 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (((𝑎𝑏) finSupp (0g‘(Scalar‘𝑊)) ∧ (𝑊 Σg (𝑢𝐵 ↦ (((𝑎𝑏)‘𝑢)( ·𝑠𝑊)𝑢))) = 0 ) → (𝑎𝑏) = (𝐵 × {(0g‘(Scalar‘𝑊))})))
15447, 134, 153mp2and 695 . . . . . . . . . . . . . . . . 17 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑎𝑏) = (𝐵 × {(0g‘(Scalar‘𝑊))}))
155154reseq1d 5879 . . . . . . . . . . . . . . . 16 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((𝑎𝑏) ↾ 𝑉) = ((𝐵 × {(0g‘(Scalar‘𝑊))}) ↾ 𝑉))
156 fnunres1 30846 . . . . . . . . . . . . . . . . 17 ((𝑎 Fn 𝑉𝑏 Fn (𝐵𝑉) ∧ (𝑉 ∩ (𝐵𝑉)) = ∅) → ((𝑎𝑏) ↾ 𝑉) = 𝑎)
15755, 58, 104, 156syl3anc 1369 . . . . . . . . . . . . . . . 16 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((𝑎𝑏) ↾ 𝑉) = 𝑎)
158 xpssres 5917 . . . . . . . . . . . . . . . . 17 (𝑉𝐵 → ((𝐵 × {(0g‘(Scalar‘𝑊))}) ↾ 𝑉) = (𝑉 × {(0g‘(Scalar‘𝑊))}))
159158ad8antlr 737 . . . . . . . . . . . . . . . 16 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → ((𝐵 × {(0g‘(Scalar‘𝑊))}) ↾ 𝑉) = (𝑉 × {(0g‘(Scalar‘𝑊))}))
160155, 157, 1593eqtr3d 2786 . . . . . . . . . . . . . . 15 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑎 = (𝑉 × {(0g‘(Scalar‘𝑊))}))
161160adantr 480 . . . . . . . . . . . . . 14 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → 𝑎 = (𝑉 × {(0g‘(Scalar‘𝑊))}))
162161fveq1d 6758 . . . . . . . . . . . . 13 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → (𝑎𝑢) = ((𝑉 × {(0g‘(Scalar‘𝑊))})‘𝑢))
163 fvex 6769 . . . . . . . . . . . . . . 15 (0g‘(Scalar‘𝑊)) ∈ V
164163fvconst2 7061 . . . . . . . . . . . . . 14 (𝑢𝑉 → ((𝑉 × {(0g‘(Scalar‘𝑊))})‘𝑢) = (0g‘(Scalar‘𝑊)))
16561, 164syl 17 . . . . . . . . . . . . 13 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → ((𝑉 × {(0g‘(Scalar‘𝑊))})‘𝑢) = (0g‘(Scalar‘𝑊)))
166162, 165eqtrd 2778 . . . . . . . . . . . 12 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → (𝑎𝑢) = (0g‘(Scalar‘𝑊)))
167166oveq1d 7270 . . . . . . . . . . 11 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → ((𝑎𝑢)( ·𝑠𝑊)𝑢) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑢))
168122ad8antr 736 . . . . . . . . . . . . 13 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → 𝑉 ⊆ (Base‘𝑊))
169168, 61sseldd 3918 . . . . . . . . . . . 12 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → 𝑢 ∈ (Base‘𝑊))
17024, 91, 92, 99, 29lmod0vs 20071 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑢 ∈ (Base‘𝑊)) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑢) = 0 )
17197, 169, 170syl2an2r 681 . . . . . . . . . . 11 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑢) = 0 )
172167, 171eqtrd 2778 . . . . . . . . . 10 (((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑢𝑉) → ((𝑎𝑢)( ·𝑠𝑊)𝑢) = 0 )
173172mpteq2dva 5170 . . . . . . . . 9 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢)) = (𝑢𝑉0 ))
174173oveq2d 7271 . . . . . . . 8 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑊 Σg (𝑢𝑉 ↦ ((𝑎𝑢)( ·𝑠𝑊)𝑢))) = (𝑊 Σg (𝑢𝑉0 )))
175 cmnmnd 19317 . . . . . . . . . 10 (𝑊 ∈ CMnd → 𝑊 ∈ Mnd)
17651, 175syl 17 . . . . . . . . 9 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑊 ∈ Mnd)
177128elfvexd 6790 . . . . . . . . 9 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑉 ∈ V)
17829gsumz 18389 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 𝑉 ∈ V) → (𝑊 Σg (𝑢𝑉0 )) = 0 )
179176, 177, 178syl2anc 583 . . . . . . . 8 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → (𝑊 Σg (𝑢𝑉0 )) = 0 )
1807, 174, 1793eqtrd 2782 . . . . . . 7 ((((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ 𝑏 finSupp (0g‘(Scalar‘𝑊))) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))) → 𝑥 = 0 )
181180anasss 466 . . . . . 6 (((((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))) ∧ (𝑏 finSupp (0g‘(Scalar‘𝑊)) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣))))) → 𝑥 = 0 )
182 eqid 2738 . . . . . . . . . . . . 13 (LSubSp‘𝑊) = (LSubSp‘𝑊)
18324, 182, 30lspcl 20153 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝐵𝑉) ⊆ (Base‘𝑊)) → (𝑁‘(𝐵𝑉)) ∈ (LSubSp‘𝑊))
18423, 28, 183syl2anc 583 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝑁‘(𝐵𝑉)) ∈ (LSubSp‘𝑊))
185184adantr 480 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → (𝑁‘(𝐵𝑉)) ∈ (LSubSp‘𝑊))
186182lsssubg 20134 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ (𝑁‘(𝐵𝑉)) ∈ (LSubSp‘𝑊)) → (𝑁‘(𝐵𝑉)) ∈ (SubGrp‘𝑊))
18723, 185, 186syl2an2r 681 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → (𝑁‘(𝐵𝑉)) ∈ (SubGrp‘𝑊))
188126elin1d 4128 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → 𝑥 ∈ (𝑁‘(𝐵𝑉)))
189130subginvcl 18679 . . . . . . . . 9 (((𝑁‘(𝐵𝑉)) ∈ (SubGrp‘𝑊) ∧ 𝑥 ∈ (𝑁‘(𝐵𝑉))) → ((invg𝑊)‘𝑥) ∈ (𝑁‘(𝐵𝑉)))
190187, 188, 189syl2anc 583 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → ((invg𝑊)‘𝑥) ∈ (𝑁‘(𝐵𝑉)))
19130, 24, 93, 91, 99, 92, 23, 28ellspds 31466 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (((invg𝑊)‘𝑥) ∈ (𝑁‘(𝐵𝑉)) ↔ ∃𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))(𝑏 finSupp (0g‘(Scalar‘𝑊)) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣))))))
192191biimpa 476 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ ((invg𝑊)‘𝑥) ∈ (𝑁‘(𝐵𝑉))) → ∃𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))(𝑏 finSupp (0g‘(Scalar‘𝑊)) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))))
193190, 192syldan 590 . . . . . . 7 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → ∃𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))(𝑏 finSupp (0g‘(Scalar‘𝑊)) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))))
194193ad3antrrr 726 . . . . . 6 (((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) → ∃𝑏 ∈ ((Base‘(Scalar‘𝑊)) ↑m (𝐵𝑉))(𝑏 finSupp (0g‘(Scalar‘𝑊)) ∧ ((invg𝑊)‘𝑥) = (𝑊 Σg (𝑣 ∈ (𝐵𝑉) ↦ ((𝑏𝑣)( ·𝑠𝑊)𝑣)))))
195181, 194r19.29a 3217 . . . . 5 (((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑊))) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))) → 𝑥 = 0 )
196195anasss 466 . . . 4 ((((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)) ∧ (𝑎 finSupp (0g‘(Scalar‘𝑊)) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣))))) → 𝑥 = 0 )
19730, 24, 93, 91, 99, 92, 23, 122ellspds 31466 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → (𝑥 ∈ (𝑁𝑉) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)(𝑎 finSupp (0g‘(Scalar‘𝑊)) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣))))))
198197biimpa 476 . . . . 5 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ (𝑁𝑉)) → ∃𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)(𝑎 finSupp (0g‘(Scalar‘𝑊)) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))))
199127, 198syldan 590 . . . 4 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → ∃𝑎 ∈ ((Base‘(Scalar‘𝑊)) ↑m 𝑉)(𝑎 finSupp (0g‘(Scalar‘𝑊)) ∧ 𝑥 = (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣)( ·𝑠𝑊)𝑣)))))
200196, 199r19.29a 3217 . . 3 ((((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) ∧ 𝑥 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉))) → 𝑥 = 0 )
20129, 24, 300ellsp 31467 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑉 ⊆ (Base‘𝑊)) → 0 ∈ (𝑁𝑉))
20223, 122, 201syl2anc 583 . . . 4 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 0 ∈ (𝑁𝑉))
20332, 202elind 4124 . . 3 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → 0 ∈ ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉)))
204200, 203eqsnd 30778 . 2 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑉𝐵) → ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉)) = { 0 })
2052043impa 1108 1 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑉𝐵) → ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉)) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  {csn 4558   class class class wbr 5070  cmpt 5153   × cxp 5578  cres 5582   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573   finSupp cfsupp 9058  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300  Grpcgrp 18492  invgcminusg 18493  SubGrpcsubg 18664  CMndccmn 19301  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148  LBasisclbs 20251  LVecclvec 20279  LIndSclinds 20922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lmhm 20199  df-lbs 20252  df-lvec 20280  df-sra 20349  df-rgmod 20350  df-nzr 20442  df-dsmm 20849  df-frlm 20864  df-uvc 20900  df-lindf 20923  df-linds 20924
This theorem is referenced by:  dimkerim  31610
  Copyright terms: Public domain W3C validator