MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  speiv Structured version   Visualization version   GIF version

Theorem speiv 1976
Description: Inference from existential specialization. (Contributed by NM, 19-Aug-1993.) (Revised by Wolf Lammen, 22-Oct-2023.)
Hypotheses
Ref Expression
speiv.1 (𝑥 = 𝑦 → (𝜓𝜑))
speiv.2 𝜓
Assertion
Ref Expression
speiv 𝑥𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem speiv
StepHypRef Expression
1 speiv.2 . 2 𝜓
21hbth 1806 . . 3 (𝜓 → ∀𝑥𝜓)
3 speiv.1 . . 3 (𝑥 = 𝑦 → (𝜓𝜑))
42, 3spimew 1975 . 2 (𝜓 → ∃𝑥𝜑)
51, 4ax-mp 5 1 𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-6 1971
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  speivw  1977  exgen  1978
  Copyright terms: Public domain W3C validator