MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exgen Structured version   Visualization version   GIF version

Theorem exgen 1978
Description: Rule of existential generalization, similar to universal generalization ax-gen 1798, but valid only if an individual exists. Its proof requires ax-6 1971 in our axiomatization but the equality predicate does not occur in its statement. Some fundamental theorems of predicate calculus can be proven from ax-gen 1798, ax-4 1812 and this theorem alone, not requiring ax-7 2011 or excessive distinct variable conditions. (Contributed by Wolf Lammen, 12-Nov-2017.) (Proof shortened by Wolf Lammen, 20-Oct-2023.)
Hypothesis
Ref Expression
exgen.1 𝜑
Assertion
Ref Expression
exgen 𝑥𝜑

Proof of Theorem exgen
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 idd 24 . 2 (𝑥 = 𝑦 → (𝜑𝜑))
2 exgen.1 . 2 𝜑
31, 2speiv 1976 1 𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-6 1971
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  extru  1979  19.2  1980  vn0  4272  ac6s6  36330
  Copyright terms: Public domain W3C validator