MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  speivw Structured version   Visualization version   GIF version

Theorem speivw 1969
Description: Version of spei 2387 with a disjoint variable condition, which does not require ax-13 2365 (neither ax-7 2003 nor ax-12 2166). (Contributed by BJ, 31-May-2019.)
Hypotheses
Ref Expression
speivw.1 (𝑥 = 𝑦 → (𝜑𝜓))
speivw.2 𝜓
Assertion
Ref Expression
speivw 𝑥𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem speivw
StepHypRef Expression
1 speivw.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21biimprd 247 . 2 (𝑥 = 𝑦 → (𝜓𝜑))
3 speivw.2 . 2 𝜓
42, 3speiv 1968 1 𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wex 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-6 1963
This theorem depends on definitions:  df-bi 206  df-ex 1774
This theorem is referenced by:  elirrv  9621  bnj1014  34723  eusnsn  46546
  Copyright terms: Public domain W3C validator