MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spimefv Structured version   Visualization version   GIF version

Theorem spimefv 2194
Description: Version of spime 2389 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 31-May-2019.)
Hypotheses
Ref Expression
spimefv.1 𝑥𝜑
spimefv.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spimefv (𝜑 → ∃𝑥𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem spimefv
StepHypRef Expression
1 spimefv.1 . . . 4 𝑥𝜑
21a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
3 spimefv.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
42, 3spimedv 2193 . 2 (⊤ → (𝜑 → ∃𝑥𝜓))
54mptru 1546 1 (𝜑 → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wtru 1540  wex 1783  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-tru 1542  df-ex 1784  df-nf 1788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator