| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfim1 | Structured version Visualization version GIF version | ||
| Description: A closed form of nfim 1896. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) df-nf 1784 changed. (Revised by Wolf Lammen, 18-Sep-2021.) |
| Ref | Expression |
|---|---|
| nfim1.1 | ⊢ Ⅎ𝑥𝜑 |
| nfim1.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfim1 | ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfim1.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nf3 1786 | . . 3 ⊢ (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)) | |
| 3 | 1, 2 | mpbi 230 | . 2 ⊢ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) |
| 4 | nftht 1792 | . . . 4 ⊢ (∀𝑥𝜑 → Ⅎ𝑥𝜑) | |
| 5 | nfim1.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 6 | 5 | sps 2185 | . . . 4 ⊢ (∀𝑥𝜑 → Ⅎ𝑥𝜓) |
| 7 | 4, 6 | nfimd 1894 | . . 3 ⊢ (∀𝑥𝜑 → Ⅎ𝑥(𝜑 → 𝜓)) |
| 8 | pm2.21 123 | . . . . 5 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 9 | 8 | alimi 1811 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 → ∀𝑥(𝜑 → 𝜓)) |
| 10 | nftht 1792 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝜓) → Ⅎ𝑥(𝜑 → 𝜓)) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 → Ⅎ𝑥(𝜑 → 𝜓)) |
| 12 | 7, 11 | jaoi 858 | . 2 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) → Ⅎ𝑥(𝜑 → 𝜓)) |
| 13 | 3, 12 | ax-mp 5 | 1 ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 848 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-or 849 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfan1 2200 sbiedw 2316 cbv1v 2338 cbv1 2407 dvelimdf 2454 sbied 2508 sbco2d 2517 ichnfimlem 47450 |
| Copyright terms: Public domain | W3C validator |