MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spimedv Structured version   Visualization version   GIF version

Theorem spimedv 2190
Description: Deduction version of spimev 2392. Version of spimed 2388 with a disjoint variable condition, which does not require ax-13 2372. See spime 2389 for a non-deduction version. (Contributed by NM, 14-May-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
spimedv.1 (𝜒 → Ⅎ𝑥𝜑)
spimedv.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spimedv (𝜒 → (𝜑 → ∃𝑥𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem spimedv
StepHypRef Expression
1 spimedv.1 . . 3 (𝜒 → Ⅎ𝑥𝜑)
21nf5rd 2189 . 2 (𝜒 → (𝜑 → ∀𝑥𝜑))
3 ax6ev 1973 . . . 4 𝑥 𝑥 = 𝑦
4 spimedv.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
53, 4eximii 1839 . . 3 𝑥(𝜑𝜓)
6519.35i 1881 . 2 (∀𝑥𝜑 → ∃𝑥𝜓)
72, 6syl6 35 1 (𝜒 → (𝜑 → ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1782  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787
This theorem is referenced by:  spimefv  2191
  Copyright terms: Public domain W3C validator