MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spnfw Structured version   Visualization version   GIF version

Theorem spnfw 1983
Description: Weak version of sp 2176. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 1-Aug-2017.) (Proof shortened by Wolf Lammen, 13-Aug-2017.)
Hypothesis
Ref Expression
spnfw.1 𝜑 → ∀𝑥 ¬ 𝜑)
Assertion
Ref Expression
spnfw (∀𝑥𝜑𝜑)

Proof of Theorem spnfw
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 spnfw.1 . 2 𝜑 → ∀𝑥 ¬ 𝜑)
2 idd 24 . 2 (𝑥 = 𝑦 → (𝜑𝜑))
31, 2spimw 1974 1 (∀𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-6 1971
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  spvw  1984  spfalw  2001
  Copyright terms: Public domain W3C validator