MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spvw Structured version   Visualization version   GIF version

Theorem spvw 1984
Description: Version of sp 2176 when 𝑥 does not occur in 𝜑. Converse of ax-5 1913. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 10-Apr-2017.) (Proof shortened by Wolf Lammen, 4-Dec-2017.) Shorten 19.3v 1985. (Revised by Wolf Lammen, 20-Oct-2023.)
Assertion
Ref Expression
spvw (∀𝑥𝜑𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem spvw
StepHypRef Expression
1 ax-5 1913 . 2 𝜑 → ∀𝑥 ¬ 𝜑)
21spnfw 1983 1 (∀𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  19.3v  1985
  Copyright terms: Public domain W3C validator