MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spvw Structured version   Visualization version   GIF version

Theorem spvw 2032
Description: Version of sp 2167 when 𝑥 does not occur in 𝜑. Converse of ax-5 1953. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 10-Apr-2017.) (Proof shortened by Wolf Lammen, 4-Dec-2017.)
Ref Expression
spvw (∀𝑥𝜑𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem spvw
StepHypRef Expression
1 19.3v 2031 . 2 (∀𝑥𝜑𝜑)
21biimpi 208 1 (∀𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021
This theorem depends on definitions:  df-bi 199  df-ex 1824
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator