![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.3v | Structured version Visualization version GIF version |
Description: Version of 19.3 2186 with a disjoint variable condition, requiring fewer axioms. Any formula can be universally quantified using a variable which it does not contain. See also 19.9v 2030. (Contributed by Anthony Hart, 13-Sep-2011.) Remove dependency on ax-7 2055. (Revised by Wolf Lammen, 4-Dec-2017.) |
Ref | Expression |
---|---|
19.3v | ⊢ (∀𝑥𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alex 1869 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
2 | 19.9v 2030 | . . 3 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ 𝜑) | |
3 | 2 | con2bii 349 | . 2 ⊢ (𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) |
4 | 1, 3 | bitr4i 270 | 1 ⊢ (∀𝑥𝜑 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 ∀wal 1599 ∃wex 1823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 |
This theorem depends on definitions: df-bi 199 df-ex 1824 |
This theorem is referenced by: spvw 2032 19.27v 2038 19.28v 2039 19.37v 2040 axrep1 5007 kmlem14 9320 zfcndrep 9771 zfcndpow 9773 zfcndac 9776 bj-axrep1 33365 bj-snsetex 33523 iooelexlt 33805 dford4 38555 relexp0eq 38950 |
Copyright terms: Public domain | W3C validator |