| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.3v | Structured version Visualization version GIF version | ||
| Description: Version of 19.3 2205 with a disjoint variable condition, requiring fewer axioms. Any formula can be universally quantified using a variable which it does not contain. See also 19.9v 1985. (Contributed by Anthony Hart, 13-Sep-2011.) Remove dependency on ax-7 2009. (Revised by Wolf Lammen, 4-Dec-2017.) (Proof shortened by Wolf Lammen, 20-Oct-2023.) |
| Ref | Expression |
|---|---|
| 19.3v | ⊢ (∀𝑥𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spvw 1982 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 2 | ax-5 1911 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (∀𝑥𝜑 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: 19.27v 1996 19.28v 1997 19.37v 1998 axrep1 5218 axrep4v 5222 axrep6OLD 5227 kmlem14 10052 zfcndrep 10502 zfcndpow 10504 zfcndac 10507 lfuhgr3 35152 bj-snsetex 36996 iooelexlt 37395 dford4 43061 relexp0eq 43733 |
| Copyright terms: Public domain | W3C validator |