MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.3v Structured version   Visualization version   GIF version

Theorem 19.3v 2031
Description: Version of 19.3 2186 with a disjoint variable condition, requiring fewer axioms. Any formula can be universally quantified using a variable which it does not contain. See also 19.9v 2030. (Contributed by Anthony Hart, 13-Sep-2011.) Remove dependency on ax-7 2055. (Revised by Wolf Lammen, 4-Dec-2017.)
Assertion
Ref Expression
19.3v (∀𝑥𝜑𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem 19.3v
StepHypRef Expression
1 alex 1869 . 2 (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑)
2 19.9v 2030 . . 3 (∃𝑥 ¬ 𝜑 ↔ ¬ 𝜑)
32con2bii 349 . 2 (𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑)
41, 3bitr4i 270 1 (∀𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 198  wal 1599  wex 1823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021
This theorem depends on definitions:  df-bi 199  df-ex 1824
This theorem is referenced by:  spvw  2032  19.27v  2038  19.28v  2039  19.37v  2040  axrep1  5007  kmlem14  9320  zfcndrep  9771  zfcndpow  9773  zfcndac  9776  bj-axrep1  33365  bj-snsetex  33523  iooelexlt  33805  dford4  38555  relexp0eq  38950
  Copyright terms: Public domain W3C validator