MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.3v Structured version   Visualization version   GIF version

Theorem 19.3v 1985
Description: Version of 19.3 2195 with a disjoint variable condition, requiring fewer axioms. Any formula can be universally quantified using a variable which it does not contain. See also 19.9v 1987. (Contributed by Anthony Hart, 13-Sep-2011.) Remove dependency on ax-7 2011. (Revised by Wolf Lammen, 4-Dec-2017.) (Proof shortened by Wolf Lammen, 20-Oct-2023.)
Assertion
Ref Expression
19.3v (∀𝑥𝜑𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem 19.3v
StepHypRef Expression
1 spvw 1984 . 2 (∀𝑥𝜑𝜑)
2 ax-5 1913 . 2 (𝜑 → ∀𝑥𝜑)
31, 2impbii 208 1 (∀𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  19.27v  1993  19.28v  1994  19.37v  1995  axrep1  5210  axrep6  5216  kmlem14  9919  zfcndrep  10370  zfcndpow  10372  zfcndac  10375  lfuhgr3  33081  bj-snsetex  35153  iooelexlt  35533  dford4  40851  relexp0eq  41309
  Copyright terms: Public domain W3C validator