Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl3anr2 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 1-Aug-2007.) (Proof shortened by Wolf Lammen, 27-Jun-2022.) |
Ref | Expression |
---|---|
syl3anr2.1 | ⊢ (𝜑 → 𝜃) |
syl3anr2.2 | ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜏)) → 𝜂) |
Ref | Expression |
---|---|
syl3anr2 | ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜑 ∧ 𝜏)) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anr2.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | 1 | 3anim2i 1151 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜏) → (𝜓 ∧ 𝜃 ∧ 𝜏)) |
3 | syl3anr2.2 | . 2 ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜏)) → 𝜂) | |
4 | 2, 3 | sylan2 592 | 1 ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜑 ∧ 𝜏)) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: mulgsubdir 18724 dipassr2 29188 |
Copyright terms: Public domain | W3C validator |