![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgsubdir | Structured version Visualization version GIF version |
Description: Distribution of group multiples over subtraction for group elements, subdir 11724 analog. (Contributed by Mario Carneiro, 13-Dec-2014.) |
Ref | Expression |
---|---|
mulgsubdir.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgsubdir.t | ⊢ · = (.g‘𝐺) |
mulgsubdir.d | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
mulgsubdir | ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 − 𝑁) · 𝑋) = ((𝑀 · 𝑋) − (𝑁 · 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znegcl 12678 | . . 3 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | |
2 | mulgsubdir.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | mulgsubdir.t | . . . 4 ⊢ · = (.g‘𝐺) | |
4 | eqid 2740 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
5 | 2, 3, 4 | mulgdir 19146 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + -𝑁) · 𝑋) = ((𝑀 · 𝑋)(+g‘𝐺)(-𝑁 · 𝑋))) |
6 | 1, 5 | syl3anr2 1417 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + -𝑁) · 𝑋) = ((𝑀 · 𝑋)(+g‘𝐺)(-𝑁 · 𝑋))) |
7 | simpr1 1194 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → 𝑀 ∈ ℤ) | |
8 | 7 | zcnd 12748 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → 𝑀 ∈ ℂ) |
9 | simpr2 1195 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → 𝑁 ∈ ℤ) | |
10 | 9 | zcnd 12748 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → 𝑁 ∈ ℂ) |
11 | 8, 10 | negsubd 11653 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → (𝑀 + -𝑁) = (𝑀 − 𝑁)) |
12 | 11 | oveq1d 7463 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + -𝑁) · 𝑋) = ((𝑀 − 𝑁) · 𝑋)) |
13 | eqid 2740 | . . . . . 6 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
14 | 2, 3, 13 | mulgneg 19132 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = ((invg‘𝐺)‘(𝑁 · 𝑋))) |
15 | 14 | 3adant3r1 1182 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → (-𝑁 · 𝑋) = ((invg‘𝐺)‘(𝑁 · 𝑋))) |
16 | 15 | oveq2d 7464 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑋)(+g‘𝐺)(-𝑁 · 𝑋)) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑁 · 𝑋)))) |
17 | 2, 3 | mulgcl 19131 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑀 · 𝑋) ∈ 𝐵) |
18 | 17 | 3adant3r2 1183 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → (𝑀 · 𝑋) ∈ 𝐵) |
19 | 2, 3 | mulgcl 19131 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
20 | 19 | 3adant3r1 1182 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → (𝑁 · 𝑋) ∈ 𝐵) |
21 | mulgsubdir.d | . . . . 5 ⊢ − = (-g‘𝐺) | |
22 | 2, 4, 13, 21 | grpsubval 19025 | . . . 4 ⊢ (((𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((𝑀 · 𝑋) − (𝑁 · 𝑋)) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑁 · 𝑋)))) |
23 | 18, 20, 22 | syl2anc 583 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑋) − (𝑁 · 𝑋)) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑁 · 𝑋)))) |
24 | 16, 23 | eqtr4d 2783 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑋)(+g‘𝐺)(-𝑁 · 𝑋)) = ((𝑀 · 𝑋) − (𝑁 · 𝑋))) |
25 | 6, 12, 24 | 3eqtr3d 2788 | 1 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 − 𝑁) · 𝑋) = ((𝑀 · 𝑋) − (𝑁 · 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 + caddc 11187 − cmin 11520 -cneg 11521 ℤcz 12639 Basecbs 17258 +gcplusg 17311 Grpcgrp 18973 invgcminusg 18974 -gcsg 18975 .gcmg 19107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-seq 14053 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 |
This theorem is referenced by: odmod 19588 odcong 19591 odm1inv 19595 gexdvds 19626 archiabllem1a 33171 |
Copyright terms: Public domain | W3C validator |