| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anim2i | Structured version Visualization version GIF version | ||
| Description: Add two conjuncts to antecedent and consequent. (Contributed by AV, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| 3animi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3anim2i | ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜃) → (𝜒 ∧ 𝜓 ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
| 2 | 3animi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | id 22 | . 2 ⊢ (𝜃 → 𝜃) | |
| 4 | 1, 2, 3 | 3anim123i 1152 | 1 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜃) → (𝜒 ∧ 𝜓 ∧ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
| This theorem is referenced by: syl3an2 1165 syl3anl2 1415 syl3anr2 1419 elfzo0z 13741 swrdfv0 14687 mdetunilem9 22626 chpdmat 22847 subgrprop2 29291 welb 37743 lincreslvec3 48399 |
| Copyright terms: Public domain | W3C validator |