MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anim2i Structured version   Visualization version   GIF version

Theorem 3anim2i 1152
Description: Add two conjuncts to antecedent and consequent. (Contributed by AV, 21-Nov-2019.)
Hypothesis
Ref Expression
3animi.1 (𝜑𝜓)
Assertion
Ref Expression
3anim2i ((𝜒𝜑𝜃) → (𝜒𝜓𝜃))

Proof of Theorem 3anim2i
StepHypRef Expression
1 id 22 . 2 (𝜒𝜒)
2 3animi.1 . 2 (𝜑𝜓)
3 id 22 . 2 (𝜃𝜃)
41, 2, 33anim123i 1150 1 ((𝜒𝜑𝜃) → (𝜒𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  syl3an2  1163  syl3anl2  1412  syl3anr2  1416  elfzo0z  13429  swrdfv0  14362  mdetunilem9  21769  chpdmat  21990  subgrprop2  27641  welb  35894  lincreslvec3  45823
  Copyright terms: Public domain W3C validator