![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anim2i | Structured version Visualization version GIF version |
Description: Add two conjuncts to antecedent and consequent. (Contributed by AV, 21-Nov-2019.) |
Ref | Expression |
---|---|
3animi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
3anim2i | ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜃) → (𝜒 ∧ 𝜓 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
2 | 3animi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | id 22 | . 2 ⊢ (𝜃 → 𝜃) | |
4 | 1, 2, 3 | 3anim123i 1151 | 1 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜃) → (𝜒 ∧ 𝜓 ∧ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: syl3an2 1164 syl3anl2 1413 syl3anr2 1417 elfzo0z 13758 swrdfv0 14697 mdetunilem9 22647 chpdmat 22868 subgrprop2 29309 welb 37696 lincreslvec3 48211 |
Copyright terms: Public domain | W3C validator |