Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl3anr1 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 31-Jul-2007.) |
Ref | Expression |
---|---|
syl3anr1.1 | ⊢ (𝜑 → 𝜓) |
syl3anr1.2 | ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜏)) → 𝜂) |
Ref | Expression |
---|---|
syl3anr1 | ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜃 ∧ 𝜏)) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anr1.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | 3anim1i 1150 | . 2 ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜏) → (𝜓 ∧ 𝜃 ∧ 𝜏)) |
3 | syl3anr1.2 | . 2 ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜏)) → 𝜂) | |
4 | 2, 3 | sylan2 592 | 1 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜃 ∧ 𝜏)) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: btwnconn1lem4 34319 pridlc2 36157 atmod1i1 37798 prmdvdsfmtnof1lem2 44925 |
Copyright terms: Public domain | W3C validator |