MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3anr3 Structured version   Visualization version   GIF version

Theorem syl3anr3 1420
Description: A syllogism inference. (Contributed by NM, 23-Aug-2007.)
Hypotheses
Ref Expression
syl3anr3.1 (𝜑𝜏)
syl3anr3.2 ((𝜒 ∧ (𝜓𝜃𝜏)) → 𝜂)
Assertion
Ref Expression
syl3anr3 ((𝜒 ∧ (𝜓𝜃𝜑)) → 𝜂)

Proof of Theorem syl3anr3
StepHypRef Expression
1 syl3anr3.1 . . 3 (𝜑𝜏)
213anim3i 1156 . 2 ((𝜓𝜃𝜑) → (𝜓𝜃𝜏))
3 syl3anr3.2 . 2 ((𝜒 ∧ (𝜓𝜃𝜏)) → 𝜂)
42, 3sylan2 596 1 ((𝜒 ∧ (𝜓𝜃𝜑)) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1091
This theorem is referenced by:  cvlatexchb1  37112
  Copyright terms: Public domain W3C validator