|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > syl3anr3 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 23-Aug-2007.) | 
| Ref | Expression | 
|---|---|
| syl3anr3.1 | ⊢ (𝜑 → 𝜏) | 
| syl3anr3.2 | ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜏)) → 𝜂) | 
| Ref | Expression | 
|---|---|
| syl3anr3 | ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜑)) → 𝜂) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl3anr3.1 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 2 | 1 | 3anim3i 1155 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜑) → (𝜓 ∧ 𝜃 ∧ 𝜏)) | 
| 3 | syl3anr3.2 | . 2 ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜏)) → 𝜂) | |
| 4 | 2, 3 | sylan2 593 | 1 ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜑)) → 𝜂) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 | 
| This theorem is referenced by: cvlatexchb1 39335 | 
| Copyright terms: Public domain | W3C validator |