![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvlatexchb1 | Structured version Visualization version GIF version |
Description: A version of cvlexchb1 38857 for atoms. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
cvlatexch.l | β’ β€ = (leβπΎ) |
cvlatexch.j | β’ β¨ = (joinβπΎ) |
cvlatexch.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
cvlatexchb1 | β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β (π β€ (π β¨ π) β (π β¨ π) = (π β¨ π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvlatl 38852 | . . . . 5 β’ (πΎ β CvLat β πΎ β AtLat) | |
2 | 1 | adantr 479 | . . . 4 β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β πΎ β AtLat) |
3 | simpr1 1191 | . . . 4 β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β π β π΄) | |
4 | simpr3 1193 | . . . 4 β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β π β π΄) | |
5 | cvlatexch.l | . . . . 5 β’ β€ = (leβπΎ) | |
6 | cvlatexch.a | . . . . 5 β’ π΄ = (AtomsβπΎ) | |
7 | 5, 6 | atncmp 38839 | . . . 4 β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΄) β (Β¬ π β€ π β π β π )) |
8 | 2, 3, 4, 7 | syl3anc 1368 | . . 3 β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β (Β¬ π β€ π β π β π )) |
9 | eqid 2725 | . . . . 5 β’ (BaseβπΎ) = (BaseβπΎ) | |
10 | 9, 6 | atbase 38816 | . . . 4 β’ (π β π΄ β π β (BaseβπΎ)) |
11 | cvlatexch.j | . . . . . 6 β’ β¨ = (joinβπΎ) | |
12 | 9, 5, 11, 6 | cvlexchb1 38857 | . . . . 5 β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β (BaseβπΎ)) β§ Β¬ π β€ π ) β (π β€ (π β¨ π) β (π β¨ π) = (π β¨ π))) |
13 | 12 | 3expia 1118 | . . . 4 β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β (BaseβπΎ))) β (Β¬ π β€ π β (π β€ (π β¨ π) β (π β¨ π) = (π β¨ π)))) |
14 | 10, 13 | syl3anr3 1415 | . . 3 β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β (Β¬ π β€ π β (π β€ (π β¨ π) β (π β¨ π) = (π β¨ π)))) |
15 | 8, 14 | sylbird 259 | . 2 β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β (π β π β (π β€ (π β¨ π) β (π β¨ π) = (π β¨ π)))) |
16 | 15 | 3impia 1114 | 1 β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π ) β (π β€ (π β¨ π) β (π β¨ π) = (π β¨ π))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2930 class class class wbr 5143 βcfv 6542 (class class class)co 7415 Basecbs 17177 lecple 17237 joincjn 18300 Atomscatm 38790 AtLatcal 38791 CvLatclc 38792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-proset 18284 df-poset 18302 df-plt 18319 df-lub 18335 df-glb 18336 df-join 18337 df-meet 18338 df-p0 18414 df-lat 18421 df-covers 38793 df-ats 38794 df-atl 38825 df-cvlat 38849 |
This theorem is referenced by: cvlatexchb2 38862 cvlatexch1 38863 cvlatexch3 38865 hlatexchb1 38921 llnexchb2lem 39396 4atexlemunv 39594 cdleme19d 39834 |
Copyright terms: Public domain | W3C validator |