Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlatexchb1 Structured version   Visualization version   GIF version

Theorem cvlatexchb1 35497
Description: A version of cvlexchb1 35493 for atoms. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlatexch.l = (le‘𝐾)
cvlatexch.j = (join‘𝐾)
cvlatexch.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvlatexchb1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑅 𝑄) ↔ (𝑅 𝑃) = (𝑅 𝑄)))

Proof of Theorem cvlatexchb1
StepHypRef Expression
1 cvlatl 35488 . . . . 5 (𝐾 ∈ CvLat → 𝐾 ∈ AtLat)
21adantr 474 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ AtLat)
3 simpr1 1205 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃𝐴)
4 simpr3 1209 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅𝐴)
5 cvlatexch.l . . . . 5 = (le‘𝐾)
6 cvlatexch.a . . . . 5 𝐴 = (Atoms‘𝐾)
75, 6atncmp 35475 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑅𝐴) → (¬ 𝑃 𝑅𝑃𝑅))
82, 3, 4, 7syl3anc 1439 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (¬ 𝑃 𝑅𝑃𝑅))
9 eqid 2778 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
109, 6atbase 35452 . . . 4 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
11 cvlatexch.j . . . . . 6 = (join‘𝐾)
129, 5, 11, 6cvlexchb1 35493 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅 ∈ (Base‘𝐾)) ∧ ¬ 𝑃 𝑅) → (𝑃 (𝑅 𝑄) ↔ (𝑅 𝑃) = (𝑅 𝑄)))
13123expia 1111 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅 ∈ (Base‘𝐾))) → (¬ 𝑃 𝑅 → (𝑃 (𝑅 𝑄) ↔ (𝑅 𝑃) = (𝑅 𝑄))))
1410, 13syl3anr3 1490 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (¬ 𝑃 𝑅 → (𝑃 (𝑅 𝑄) ↔ (𝑅 𝑃) = (𝑅 𝑄))))
158, 14sylbird 252 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃𝑅 → (𝑃 (𝑅 𝑄) ↔ (𝑅 𝑃) = (𝑅 𝑄))))
16153impia 1106 1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑅 𝑄) ↔ (𝑅 𝑃) = (𝑅 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969   class class class wbr 4888  cfv 6137  (class class class)co 6924  Basecbs 16266  lecple 16356  joincjn 17341  Atomscatm 35426  AtLatcal 35427  CvLatclc 35428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-proset 17325  df-poset 17343  df-plt 17355  df-lub 17371  df-glb 17372  df-join 17373  df-meet 17374  df-p0 17436  df-lat 17443  df-covers 35429  df-ats 35430  df-atl 35461  df-cvlat 35485
This theorem is referenced by:  cvlatexchb2  35498  cvlatexch1  35499  cvlatexch3  35501  hlatexchb1  35556  llnexchb2lem  36031  4atexlemunv  36229  cdleme19d  36469
  Copyright terms: Public domain W3C validator