| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anim3i | Structured version Visualization version GIF version | ||
| Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 19-Aug-2009.) |
| Ref | Expression |
|---|---|
| 3animi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3anim3i | ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) → (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
| 2 | id 22 | . 2 ⊢ (𝜃 → 𝜃) | |
| 3 | 3animi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 1, 2, 3 | 3anim123i 1151 | 1 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) → (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl3an3 1165 syl3anl3 1416 syl3anr3 1420 elioo4g 13343 ssnn0fi 13926 tmdcn2 24009 axcont 28956 numclwwlk3 30364 minvecolem3 30855 bnj556 34883 bnj557 34884 bnj1145 34976 btwnconn1lem4 36071 btwnconn1lem5 36072 btwnconn1lem6 36073 bj-ceqsalt 36867 bj-ceqsaltv 36868 uhgrimisgrgric 47924 |
| Copyright terms: Public domain | W3C validator |