MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anim3i Structured version   Visualization version   GIF version

Theorem 3anim3i 1154
Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 19-Aug-2009.)
Hypothesis
Ref Expression
3animi.1 (𝜑𝜓)
Assertion
Ref Expression
3anim3i ((𝜒𝜃𝜑) → (𝜒𝜃𝜓))

Proof of Theorem 3anim3i
StepHypRef Expression
1 id 22 . 2 (𝜒𝜒)
2 id 22 . 2 (𝜃𝜃)
3 3animi.1 . 2 (𝜑𝜓)
41, 2, 33anim123i 1151 1 ((𝜒𝜃𝜑) → (𝜒𝜃𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  syl3an3  1165  syl3anl3  1416  syl3anr3  1420  elioo4g  13343  ssnn0fi  13926  tmdcn2  24009  axcont  28956  numclwwlk3  30364  minvecolem3  30855  bnj556  34883  bnj557  34884  bnj1145  34976  btwnconn1lem4  36071  btwnconn1lem5  36072  btwnconn1lem6  36073  bj-ceqsalt  36867  bj-ceqsaltv  36868  uhgrimisgrgric  47924
  Copyright terms: Public domain W3C validator