| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anim3i | Structured version Visualization version GIF version | ||
| Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 19-Aug-2009.) |
| Ref | Expression |
|---|---|
| 3animi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3anim3i | ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) → (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
| 2 | id 22 | . 2 ⊢ (𝜃 → 𝜃) | |
| 3 | 3animi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 1, 2, 3 | 3anim123i 1151 | 1 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) → (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl3an3 1165 syl3anl3 1416 syl3anr3 1420 elioo4g 13367 ssnn0fi 13950 tmdcn2 23976 axcont 28903 numclwwlk3 30314 minvecolem3 30805 bnj556 34890 bnj557 34891 bnj1145 34983 btwnconn1lem4 36078 btwnconn1lem5 36079 btwnconn1lem6 36080 bj-ceqsalt 36874 bj-ceqsaltv 36875 uhgrimisgrgric 47931 |
| Copyright terms: Public domain | W3C validator |