Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anim3i | Structured version Visualization version GIF version |
Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 19-Aug-2009.) |
Ref | Expression |
---|---|
3animi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
3anim3i | ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) → (𝜒 ∧ 𝜃 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
2 | id 22 | . 2 ⊢ (𝜃 → 𝜃) | |
3 | 3animi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 1, 2, 3 | 3anim123i 1149 | 1 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) → (𝜒 ∧ 𝜃 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: syl3an3 1163 syl3anl3 1412 syl3anr3 1416 elioo4g 13068 ssnn0fi 13633 tmdcn2 23148 axcont 27247 numclwwlk3 28650 minvecolem3 29139 bnj556 32780 bnj557 32781 bnj1145 32873 btwnconn1lem4 34319 btwnconn1lem5 34320 btwnconn1lem6 34321 bj-ceqsalt 34998 bj-ceqsaltv 34999 |
Copyright terms: Public domain | W3C validator |