MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anim3i Structured version   Visualization version   GIF version

Theorem 3anim3i 1152
Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 19-Aug-2009.)
Hypothesis
Ref Expression
3animi.1 (𝜑𝜓)
Assertion
Ref Expression
3anim3i ((𝜒𝜃𝜑) → (𝜒𝜃𝜓))

Proof of Theorem 3anim3i
StepHypRef Expression
1 id 22 . 2 (𝜒𝜒)
2 id 22 . 2 (𝜃𝜃)
3 3animi.1 . 2 (𝜑𝜓)
41, 2, 33anim123i 1149 1 ((𝜒𝜃𝜑) → (𝜒𝜃𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  syl3an3  1163  syl3anl3  1412  syl3anr3  1416  elioo4g  13068  ssnn0fi  13633  tmdcn2  23148  axcont  27247  numclwwlk3  28650  minvecolem3  29139  bnj556  32780  bnj557  32781  bnj1145  32873  btwnconn1lem4  34319  btwnconn1lem5  34320  btwnconn1lem6  34321  bj-ceqsalt  34998  bj-ceqsaltv  34999
  Copyright terms: Public domain W3C validator