| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anim3i | Structured version Visualization version GIF version | ||
| Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 19-Aug-2009.) |
| Ref | Expression |
|---|---|
| 3animi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3anim3i | ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) → (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
| 2 | id 22 | . 2 ⊢ (𝜃 → 𝜃) | |
| 3 | 3animi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 1, 2, 3 | 3anim123i 1151 | 1 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) → (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl3an3 1165 syl3anl3 1416 syl3anr3 1420 elioo4g 13309 ssnn0fi 13892 tmdcn2 23974 axcont 28925 numclwwlk3 30333 minvecolem3 30824 bnj556 34883 bnj557 34884 bnj1145 34976 btwnconn1lem4 36084 btwnconn1lem5 36085 btwnconn1lem6 36086 bj-ceqsalt 36880 bj-ceqsaltv 36881 uhgrimisgrgric 47935 clnbgr3stgrgrlim 48023 |
| Copyright terms: Public domain | W3C validator |