| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anim3i | Structured version Visualization version GIF version | ||
| Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 19-Aug-2009.) |
| Ref | Expression |
|---|---|
| 3animi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3anim3i | ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) → (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
| 2 | id 22 | . 2 ⊢ (𝜃 → 𝜃) | |
| 3 | 3animi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 1, 2, 3 | 3anim123i 1151 | 1 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) → (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl3an3 1165 syl3anl3 1416 syl3anr3 1420 elioo4g 13423 ssnn0fi 14003 tmdcn2 24027 axcont 28955 numclwwlk3 30366 minvecolem3 30857 bnj556 34931 bnj557 34932 bnj1145 35024 btwnconn1lem4 36108 btwnconn1lem5 36109 btwnconn1lem6 36110 bj-ceqsalt 36904 bj-ceqsaltv 36905 uhgrimisgrgric 47944 |
| Copyright terms: Public domain | W3C validator |