MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anim3i Structured version   Visualization version   GIF version

Theorem 3anim3i 1134
Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 19-Aug-2009.)
Hypothesis
Ref Expression
3animi.1 (𝜑𝜓)
Assertion
Ref Expression
3anim3i ((𝜒𝜃𝜑) → (𝜒𝜃𝜓))

Proof of Theorem 3anim3i
StepHypRef Expression
1 id 22 . 2 (𝜒𝜒)
2 id 22 . 2 (𝜃𝜃)
3 3animi.1 . 2 (𝜑𝜓)
41, 2, 33anim123i 1131 1 ((𝜒𝜃𝜑) → (𝜒𝜃𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 388  df-3an 1070
This theorem is referenced by:  syl3an3  1145  syl3anl3  1394  syl3anr3  1398  elioo4g  12606  ssnn0fi  13161  tmdcn2  22391  axcont  26455  numclwwlk3  27932  minvecolem3  28421  bnj556  31780  bnj557  31781  bnj1145  31871  btwnconn1lem4  33012  btwnconn1lem5  33013  btwnconn1lem6  33014  bj-ceqsalt  33635  bj-ceqsaltv  33636
  Copyright terms: Public domain W3C validator