| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anim3i | Structured version Visualization version GIF version | ||
| Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 19-Aug-2009.) |
| Ref | Expression |
|---|---|
| 3animi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3anim3i | ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) → (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
| 2 | id 22 | . 2 ⊢ (𝜃 → 𝜃) | |
| 3 | 3animi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 1, 2, 3 | 3anim123i 1151 | 1 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) → (𝜒 ∧ 𝜃 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl3an3 1165 syl3anl3 1416 syl3anr3 1420 elioo4g 13374 ssnn0fi 13957 tmdcn2 23983 axcont 28910 numclwwlk3 30321 minvecolem3 30812 bnj556 34897 bnj557 34898 bnj1145 34990 btwnconn1lem4 36085 btwnconn1lem5 36086 btwnconn1lem6 36087 bj-ceqsalt 36881 bj-ceqsaltv 36882 uhgrimisgrgric 47935 |
| Copyright terms: Public domain | W3C validator |