![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anim3i | Structured version Visualization version GIF version |
Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 19-Aug-2009.) |
Ref | Expression |
---|---|
3animi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
3anim3i | ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) → (𝜒 ∧ 𝜃 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
2 | id 22 | . 2 ⊢ (𝜃 → 𝜃) | |
3 | 3animi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 1, 2, 3 | 3anim123i 1150 | 1 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) → (𝜒 ∧ 𝜃 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: syl3an3 1164 syl3anl3 1413 syl3anr3 1417 elioo4g 13443 ssnn0fi 14022 tmdcn2 24112 axcont 29005 numclwwlk3 30413 minvecolem3 30904 bnj556 34892 bnj557 34893 bnj1145 34985 btwnconn1lem4 36071 btwnconn1lem5 36072 btwnconn1lem6 36073 bj-ceqsalt 36868 bj-ceqsaltv 36869 uhgrimisgrgric 47836 |
Copyright terms: Public domain | W3C validator |