![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anim3i | Structured version Visualization version GIF version |
Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 19-Aug-2009.) |
Ref | Expression |
---|---|
3animi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
3anim3i | ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) → (𝜒 ∧ 𝜃 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
2 | id 22 | . 2 ⊢ (𝜃 → 𝜃) | |
3 | 3animi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 1, 2, 3 | 3anim123i 1151 | 1 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) → (𝜒 ∧ 𝜃 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: syl3an3 1165 syl3anl3 1414 syl3anr3 1418 elioo4g 13467 ssnn0fi 14036 tmdcn2 24118 axcont 29009 numclwwlk3 30417 minvecolem3 30908 bnj556 34876 bnj557 34877 bnj1145 34969 btwnconn1lem4 36054 btwnconn1lem5 36055 btwnconn1lem6 36056 bj-ceqsalt 36852 bj-ceqsaltv 36853 uhgrimisgrgric 47783 |
Copyright terms: Public domain | W3C validator |