MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anim3i Structured version   Visualization version   GIF version

Theorem 3anim3i 1154
Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 19-Aug-2009.)
Hypothesis
Ref Expression
3animi.1 (𝜑𝜓)
Assertion
Ref Expression
3anim3i ((𝜒𝜃𝜑) → (𝜒𝜃𝜓))

Proof of Theorem 3anim3i
StepHypRef Expression
1 id 22 . 2 (𝜒𝜒)
2 id 22 . 2 (𝜃𝜃)
3 3animi.1 . 2 (𝜑𝜓)
41, 2, 33anim123i 1151 1 ((𝜒𝜃𝜑) → (𝜒𝜃𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  syl3an3  1165  syl3anl3  1414  syl3anr3  1418  elioo4g  13467  ssnn0fi  14036  tmdcn2  24118  axcont  29009  numclwwlk3  30417  minvecolem3  30908  bnj556  34876  bnj557  34877  bnj1145  34969  btwnconn1lem4  36054  btwnconn1lem5  36055  btwnconn1lem6  36056  bj-ceqsalt  36852  bj-ceqsaltv  36853  uhgrimisgrgric  47783
  Copyright terms: Public domain W3C validator