MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anim3i Structured version   Visualization version   GIF version

Theorem 3anim3i 1154
Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 19-Aug-2009.)
Hypothesis
Ref Expression
3animi.1 (𝜑𝜓)
Assertion
Ref Expression
3anim3i ((𝜒𝜃𝜑) → (𝜒𝜃𝜓))

Proof of Theorem 3anim3i
StepHypRef Expression
1 id 22 . 2 (𝜒𝜒)
2 id 22 . 2 (𝜃𝜃)
3 3animi.1 . 2 (𝜑𝜓)
41, 2, 33anim123i 1151 1 ((𝜒𝜃𝜑) → (𝜒𝜃𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  syl3an3  1165  syl3anl3  1416  syl3anr3  1420  elioo4g  13367  ssnn0fi  13950  tmdcn2  23976  axcont  28903  numclwwlk3  30314  minvecolem3  30805  bnj556  34890  bnj557  34891  bnj1145  34983  btwnconn1lem4  36078  btwnconn1lem5  36079  btwnconn1lem6  36080  bj-ceqsalt  36874  bj-ceqsaltv  36875  uhgrimisgrgric  47931
  Copyright terms: Public domain W3C validator