![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anim3i | Structured version Visualization version GIF version |
Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 19-Aug-2009.) |
Ref | Expression |
---|---|
3animi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
3anim3i | ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) → (𝜒 ∧ 𝜃 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
2 | id 22 | . 2 ⊢ (𝜃 → 𝜃) | |
3 | 3animi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 1, 2, 3 | 3anim123i 1131 | 1 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) → (𝜒 ∧ 𝜃 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 388 df-3an 1070 |
This theorem is referenced by: syl3an3 1145 syl3anl3 1394 syl3anr3 1398 elioo4g 12606 ssnn0fi 13161 tmdcn2 22391 axcont 26455 numclwwlk3 27932 minvecolem3 28421 bnj556 31780 bnj557 31781 bnj1145 31871 btwnconn1lem4 33012 btwnconn1lem5 33013 btwnconn1lem6 33014 bj-ceqsalt 33635 bj-ceqsaltv 33636 |
Copyright terms: Public domain | W3C validator |