|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sylancbr | Structured version Visualization version GIF version | ||
| Description: A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004.) | 
| Ref | Expression | 
|---|---|
| sylancbr.1 | ⊢ (𝜓 ↔ 𝜑) | 
| sylancbr.2 | ⊢ (𝜒 ↔ 𝜑) | 
| sylancbr.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | 
| Ref | Expression | 
|---|---|
| sylancbr | ⊢ (𝜑 → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sylancbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | sylancbr.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
| 3 | sylancbr.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 1, 2, 3 | syl2anbr 599 | . 2 ⊢ ((𝜑 ∧ 𝜑) → 𝜃) | 
| 5 | 4 | anidms 566 | 1 ⊢ (𝜑 → 𝜃) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: unixpid 6304 | 
| Copyright terms: Public domain | W3C validator |