Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylancbr | Structured version Visualization version GIF version |
Description: A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004.) |
Ref | Expression |
---|---|
sylancbr.1 | ⊢ (𝜓 ↔ 𝜑) |
sylancbr.2 | ⊢ (𝜒 ↔ 𝜑) |
sylancbr.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
sylancbr | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylancbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | sylancbr.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
3 | sylancbr.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 1, 2, 3 | syl2anbr 599 | . 2 ⊢ ((𝜑 ∧ 𝜑) → 𝜃) |
5 | 4 | anidms 567 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: unixpid 6187 |
Copyright terms: Public domain | W3C validator |