| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syldanl | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction with conjoined antecedents. (Contributed by Jeff Madsen, 20-Jun-2011.) |
| Ref | Expression |
|---|---|
| syldanl.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| syldanl.2 | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syldanl | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syldanl.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 2 | imdistani 568 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) |
| 4 | syldanl.2 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 5 | 3, 4 | sylan 580 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylanl2 681 oen0 8501 oeordsuc 8509 erth 8676 phplem2 9114 lo1bdd2 15428 grplmulf1o 18923 grplactcnv 18953 trust 24142 efrlim 26904 efrlimOLD 26905 fedgmullem2 33638 submateq 33817 heibor1lem 37848 idlnegcl 38061 igenmin 38103 eqvrelth 38647 sticksstones22 42200 binomcxplemnotnn0 44388 vonioolem1 46717 vonicclem1 46720 smfsuplem1 46848 smflimsuplem4 46860 |
| Copyright terms: Public domain | W3C validator |