| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syldanl | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction with conjoined antecedents. (Contributed by Jeff Madsen, 20-Jun-2011.) |
| Ref | Expression |
|---|---|
| syldanl.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| syldanl.2 | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syldanl | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syldanl.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 2 | imdistani 568 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) |
| 4 | syldanl.2 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 5 | 3, 4 | sylan 580 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylanl2 681 oen0 8603 oeordsuc 8611 erth 8775 phplem2 9224 lo1bdd2 15545 grplmulf1o 19001 grplactcnv 19031 trust 24173 efrlim 26936 efrlimOLD 26937 fedgmullem2 33675 submateq 33845 heibor1lem 37838 idlnegcl 38051 igenmin 38093 eqvrelth 38634 sticksstones22 42186 binomcxplemnotnn0 44355 vonioolem1 46689 vonicclem1 46692 smfsuplem1 46820 smflimsuplem4 46832 |
| Copyright terms: Public domain | W3C validator |