| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syldanl | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction with conjoined antecedents. (Contributed by Jeff Madsen, 20-Jun-2011.) |
| Ref | Expression |
|---|---|
| syldanl.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| syldanl.2 | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syldanl | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syldanl.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 2 | imdistani 568 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) |
| 4 | syldanl.2 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 5 | 3, 4 | sylan 580 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylanl2 681 oen0 8550 oeordsuc 8558 erth 8725 phplem2 9169 lo1bdd2 15490 grplmulf1o 18945 grplactcnv 18975 trust 24117 efrlim 26879 efrlimOLD 26880 fedgmullem2 33626 submateq 33799 heibor1lem 37803 idlnegcl 38016 igenmin 38058 eqvrelth 38602 sticksstones22 42156 binomcxplemnotnn0 44345 vonioolem1 46678 vonicclem1 46681 smfsuplem1 46809 smflimsuplem4 46821 |
| Copyright terms: Public domain | W3C validator |