MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syldanl Structured version   Visualization version   GIF version

Theorem syldanl 602
Description: A syllogism deduction with conjoined antecedents. (Contributed by Jeff Madsen, 20-Jun-2011.)
Hypotheses
Ref Expression
syldanl.1 ((𝜑𝜓) → 𝜒)
syldanl.2 (((𝜑𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
syldanl (((𝜑𝜓) ∧ 𝜃) → 𝜏)

Proof of Theorem syldanl
StepHypRef Expression
1 syldanl.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 412 . . 3 (𝜑 → (𝜓𝜒))
32imdistani 568 . 2 ((𝜑𝜓) → (𝜑𝜒))
4 syldanl.2 . 2 (((𝜑𝜒) ∧ 𝜃) → 𝜏)
53, 4sylan 580 1 (((𝜑𝜓) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  sylanl2  681  oen0  8550  oeordsuc  8558  erth  8725  phplem2  9169  lo1bdd2  15490  grplmulf1o  18945  grplactcnv  18975  trust  24117  efrlim  26879  efrlimOLD  26880  fedgmullem2  33626  submateq  33799  heibor1lem  37803  idlnegcl  38016  igenmin  38058  eqvrelth  38602  sticksstones22  42156  binomcxplemnotnn0  44345  vonioolem1  46678  vonicclem1  46681  smfsuplem1  46809  smflimsuplem4  46821
  Copyright terms: Public domain W3C validator