MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syldanl Structured version   Visualization version   GIF version

Theorem syldanl 602
Description: A syllogism deduction with conjoined antecedents. (Contributed by Jeff Madsen, 20-Jun-2011.)
Hypotheses
Ref Expression
syldanl.1 ((𝜑𝜓) → 𝜒)
syldanl.2 (((𝜑𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
syldanl (((𝜑𝜓) ∧ 𝜃) → 𝜏)

Proof of Theorem syldanl
StepHypRef Expression
1 syldanl.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 412 . . 3 (𝜑 → (𝜓𝜒))
32imdistani 568 . 2 ((𝜑𝜓) → (𝜑𝜒))
4 syldanl.2 . 2 (((𝜑𝜒) ∧ 𝜃) → 𝜏)
53, 4sylan 580 1 (((𝜑𝜓) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  sylanl2  681  oen0  8603  oeordsuc  8611  erth  8775  phplem2  9224  lo1bdd2  15545  grplmulf1o  19001  grplactcnv  19031  trust  24173  efrlim  26936  efrlimOLD  26937  fedgmullem2  33675  submateq  33845  heibor1lem  37838  idlnegcl  38051  igenmin  38093  eqvrelth  38634  sticksstones22  42186  binomcxplemnotnn0  44355  vonioolem1  46689  vonicclem1  46692  smfsuplem1  46820  smflimsuplem4  46832
  Copyright terms: Public domain W3C validator