MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syldanl Structured version   Visualization version   GIF version

Theorem syldanl 602
Description: A syllogism deduction with conjoined antecedents. (Contributed by Jeff Madsen, 20-Jun-2011.)
Hypotheses
Ref Expression
syldanl.1 ((𝜑𝜓) → 𝜒)
syldanl.2 (((𝜑𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
syldanl (((𝜑𝜓) ∧ 𝜃) → 𝜏)

Proof of Theorem syldanl
StepHypRef Expression
1 syldanl.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 413 . . 3 (𝜑 → (𝜓𝜒))
32imdistani 569 . 2 ((𝜑𝜓) → (𝜑𝜒))
4 syldanl.2 . 2 (((𝜑𝜒) ∧ 𝜃) → 𝜏)
53, 4sylan 580 1 (((𝜑𝜓) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  sylanl2  678  oen0  8417  oeordsuc  8425  erth  8547  phplem2  8991  lo1bdd2  15233  grplmulf1o  18649  grplactcnv  18678  trust  23381  efrlim  26119  fedgmullem2  31711  submateq  31759  heibor1lem  35967  idlnegcl  36180  igenmin  36222  eqvrelth  36724  sticksstones22  40124  binomcxplemnotnn0  41974  vonioolem1  44218  vonicclem1  44221  smfsuplem1  44344  smflimsuplem4  44356
  Copyright terms: Public domain W3C validator