![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syldanl | Structured version Visualization version GIF version |
Description: A syllogism deduction with conjoined antecedents. (Contributed by Jeff Madsen, 20-Jun-2011.) |
Ref | Expression |
---|---|
syldanl.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
syldanl.2 | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syldanl | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syldanl.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 413 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 2 | imdistani 569 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) |
4 | syldanl.2 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
5 | 3, 4 | sylan 580 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: sylanl2 679 oen0 8588 oeordsuc 8596 erth 8754 phplem2 9210 lo1bdd2 15472 grplmulf1o 18933 grplactcnv 18962 trust 23954 efrlim 26698 fedgmullem2 32991 submateq 33075 heibor1lem 36980 idlnegcl 37193 igenmin 37235 eqvrelth 37784 sticksstones22 41290 binomcxplemnotnn0 43417 vonioolem1 45695 vonicclem1 45698 smfsuplem1 45826 smflimsuplem4 45838 |
Copyright terms: Public domain | W3C validator |