MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syldanl Structured version   Visualization version   GIF version

Theorem syldanl 602
Description: A syllogism deduction with conjoined antecedents. (Contributed by Jeff Madsen, 20-Jun-2011.)
Hypotheses
Ref Expression
syldanl.1 ((𝜑𝜓) → 𝜒)
syldanl.2 (((𝜑𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
syldanl (((𝜑𝜓) ∧ 𝜃) → 𝜏)

Proof of Theorem syldanl
StepHypRef Expression
1 syldanl.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 412 . . 3 (𝜑 → (𝜓𝜒))
32imdistani 568 . 2 ((𝜑𝜓) → (𝜑𝜒))
4 syldanl.2 . 2 (((𝜑𝜒) ∧ 𝜃) → 𝜏)
53, 4sylan 580 1 (((𝜑𝜓) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  sylanl2  681  oen0  8507  oeordsuc  8515  erth  8682  phplem2  9121  lo1bdd2  15433  grplmulf1o  18928  grplactcnv  18958  trust  24145  efrlim  26907  efrlimOLD  26908  fedgmullem2  33664  submateq  33843  heibor1lem  37869  idlnegcl  38082  igenmin  38124  eqvrelth  38727  sticksstones22  42281  binomcxplemnotnn0  44473  vonioolem1  46802  vonicclem1  46805  smfsuplem1  46933  smflimsuplem4  46945
  Copyright terms: Public domain W3C validator