MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syldanl Structured version   Visualization version   GIF version

Theorem syldanl 602
Description: A syllogism deduction with conjoined antecedents. (Contributed by Jeff Madsen, 20-Jun-2011.)
Hypotheses
Ref Expression
syldanl.1 ((𝜑𝜓) → 𝜒)
syldanl.2 (((𝜑𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
syldanl (((𝜑𝜓) ∧ 𝜃) → 𝜏)

Proof of Theorem syldanl
StepHypRef Expression
1 syldanl.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 412 . . 3 (𝜑 → (𝜓𝜒))
32imdistani 568 . 2 ((𝜑𝜓) → (𝜑𝜒))
4 syldanl.2 . 2 (((𝜑𝜒) ∧ 𝜃) → 𝜏)
53, 4sylan 580 1 (((𝜑𝜓) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  sylanl2  681  oen0  8623  oeordsuc  8631  erth  8795  phplem2  9243  lo1bdd2  15557  grplmulf1o  19044  grplactcnv  19074  trust  24254  efrlim  27027  efrlimOLD  27028  fedgmullem2  33658  submateq  33770  heibor1lem  37796  idlnegcl  38009  igenmin  38051  eqvrelth  38593  sticksstones22  42150  binomcxplemnotnn0  44352  vonioolem1  46636  vonicclem1  46639  smfsuplem1  46767  smflimsuplem4  46779
  Copyright terms: Public domain W3C validator