| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syldanl | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction with conjoined antecedents. (Contributed by Jeff Madsen, 20-Jun-2011.) |
| Ref | Expression |
|---|---|
| syldanl.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| syldanl.2 | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| syldanl | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syldanl.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 2 | imdistani 568 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) |
| 4 | syldanl.2 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 5 | 3, 4 | sylan 580 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylanl2 681 oen0 8625 oeordsuc 8633 erth 8797 phplem2 9246 lo1bdd2 15561 grplmulf1o 19032 grplactcnv 19062 trust 24239 efrlim 27013 efrlimOLD 27014 fedgmullem2 33682 submateq 33809 heibor1lem 37817 idlnegcl 38030 igenmin 38072 eqvrelth 38613 sticksstones22 42170 binomcxplemnotnn0 44380 vonioolem1 46700 vonicclem1 46703 smfsuplem1 46831 smflimsuplem4 46843 |
| Copyright terms: Public domain | W3C validator |