MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unixpid Structured version   Visualization version   GIF version

Theorem unixpid 6259
Description: Field of a Cartesian square. (Contributed by FL, 10-Oct-2009.)
Assertion
Ref Expression
unixpid (𝐴 × 𝐴) = 𝐴

Proof of Theorem unixpid
StepHypRef Expression
1 xpeq1 5654 . . . 4 (𝐴 = ∅ → (𝐴 × 𝐴) = (∅ × 𝐴))
2 0xp 5739 . . . 4 (∅ × 𝐴) = ∅
31, 2eqtrdi 2781 . . 3 (𝐴 = ∅ → (𝐴 × 𝐴) = ∅)
4 unieq 4884 . . . . 5 ((𝐴 × 𝐴) = ∅ → (𝐴 × 𝐴) = ∅)
54unieqd 4886 . . . 4 ((𝐴 × 𝐴) = ∅ → (𝐴 × 𝐴) = ∅)
6 uni0 4901 . . . . . 6 ∅ = ∅
76unieqi 4885 . . . . 5 ∅ =
87, 6eqtri 2753 . . . 4 ∅ = ∅
9 eqtr 2750 . . . . 5 (( (𝐴 × 𝐴) = ∅ ∧ ∅ = ∅) → (𝐴 × 𝐴) = ∅)
10 eqtr 2750 . . . . . . 7 (( (𝐴 × 𝐴) = ∅ ∧ ∅ = 𝐴) → (𝐴 × 𝐴) = 𝐴)
1110expcom 413 . . . . . 6 (∅ = 𝐴 → ( (𝐴 × 𝐴) = ∅ → (𝐴 × 𝐴) = 𝐴))
1211eqcoms 2738 . . . . 5 (𝐴 = ∅ → ( (𝐴 × 𝐴) = ∅ → (𝐴 × 𝐴) = 𝐴))
139, 12syl5com 31 . . . 4 (( (𝐴 × 𝐴) = ∅ ∧ ∅ = ∅) → (𝐴 = ∅ → (𝐴 × 𝐴) = 𝐴))
145, 8, 13sylancl 586 . . 3 ((𝐴 × 𝐴) = ∅ → (𝐴 = ∅ → (𝐴 × 𝐴) = 𝐴))
153, 14mpcom 38 . 2 (𝐴 = ∅ → (𝐴 × 𝐴) = 𝐴)
16 df-ne 2927 . . 3 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
17 xpnz 6134 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐴 ≠ ∅) ↔ (𝐴 × 𝐴) ≠ ∅)
18 unixp 6257 . . . . 5 ((𝐴 × 𝐴) ≠ ∅ → (𝐴 × 𝐴) = (𝐴𝐴))
19 unidm 4122 . . . . 5 (𝐴𝐴) = 𝐴
2018, 19eqtrdi 2781 . . . 4 ((𝐴 × 𝐴) ≠ ∅ → (𝐴 × 𝐴) = 𝐴)
2117, 20sylbi 217 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 ≠ ∅) → (𝐴 × 𝐴) = 𝐴)
2216, 16, 21sylancbr 601 . 2 𝐴 = ∅ → (𝐴 × 𝐴) = 𝐴)
2315, 22pm2.61i 182 1 (𝐴 × 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wne 2926  cun 3914  c0 4298   cuni 4873   × cxp 5638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-xp 5646  df-rel 5647  df-cnv 5648  df-dm 5650  df-rn 5651
This theorem is referenced by:  psss  18545
  Copyright terms: Public domain W3C validator