MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2anbr Structured version   Visualization version   GIF version

Theorem syl2anbr 599
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.)
Hypotheses
Ref Expression
syl2anbr.1 (𝜓𝜑)
syl2anbr.2 (𝜒𝜏)
syl2anbr.3 ((𝜓𝜒) → 𝜃)
Assertion
Ref Expression
syl2anbr ((𝜑𝜏) → 𝜃)

Proof of Theorem syl2anbr
StepHypRef Expression
1 syl2anbr.2 . 2 (𝜒𝜏)
2 syl2anbr.1 . . 3 (𝜓𝜑)
3 syl2anbr.3 . . 3 ((𝜓𝜒) → 𝜃)
42, 3sylanbr 582 . 2 ((𝜑𝜒) → 𝜃)
51, 4sylan2br 595 1 ((𝜑𝜏) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  sylancbr  601  reusv2  5409  rexopabb  5538  tz6.12  6932  r1ord3  9820  brdom7disj  10569  brdom6disj  10570  alephadd  10615  ltresr  11178  divmuldiv  11965  fnn0ind  12715  rexanuz  15381  nprmi  16723  lsmvalx  19672  cncfval  24928  angval  26859  amgmlem  27048  sspval  30752  sshjval  31379  sshjval3  31383  hosmval  31764  hodmval  31766  hfsmval  31767  opreu2reuALT  32505  broutsideof3  36108  mptsnunlem  37321  relowlpssretop  37347  line2ylem  48601
  Copyright terms: Public domain W3C validator