![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2anbr | Structured version Visualization version GIF version |
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
Ref | Expression |
---|---|
syl2anbr.1 | ⊢ (𝜓 ↔ 𝜑) |
syl2anbr.2 | ⊢ (𝜒 ↔ 𝜏) |
syl2anbr.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
syl2anbr | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anbr.2 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
2 | syl2anbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
3 | syl2anbr.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylanbr 582 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | sylan2br 595 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: sylancbr 601 reusv2 5401 rexopabb 5528 tz6.12 6916 r1ord3 9779 brdom7disj 10528 brdom6disj 10529 alephadd 10574 ltresr 11137 divmuldiv 11916 fnn0ind 12663 rexanuz 15294 nprmi 16628 lsmvalx 19509 cncfval 24411 angval 26313 amgmlem 26501 sspval 30014 sshjval 30641 sshjval3 30645 hosmval 31026 hodmval 31028 hfsmval 31029 opreu2reuALT 31755 broutsideof3 35167 mptsnunlem 36305 relowlpssretop 36331 line2ylem 47515 |
Copyright terms: Public domain | W3C validator |