MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2anbr Structured version   Visualization version   GIF version

Theorem syl2anbr 599
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.)
Hypotheses
Ref Expression
syl2anbr.1 (𝜓𝜑)
syl2anbr.2 (𝜒𝜏)
syl2anbr.3 ((𝜓𝜒) → 𝜃)
Assertion
Ref Expression
syl2anbr ((𝜑𝜏) → 𝜃)

Proof of Theorem syl2anbr
StepHypRef Expression
1 syl2anbr.2 . 2 (𝜒𝜏)
2 syl2anbr.1 . . 3 (𝜓𝜑)
3 syl2anbr.3 . . 3 ((𝜓𝜒) → 𝜃)
42, 3sylanbr 582 . 2 ((𝜑𝜒) → 𝜃)
51, 4sylan2br 595 1 ((𝜑𝜏) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  sylancbr  601  reusv2  5401  rexopabb  5528  tz6.12  6916  r1ord3  9776  brdom7disj  10525  brdom6disj  10526  alephadd  10571  ltresr  11134  divmuldiv  11913  fnn0ind  12660  rexanuz  15291  nprmi  16625  lsmvalx  19506  cncfval  24403  angval  26303  amgmlem  26491  sspval  29971  sshjval  30598  sshjval3  30602  hosmval  30983  hodmval  30985  hfsmval  30986  opreu2reuALT  31712  broutsideof3  35093  mptsnunlem  36214  relowlpssretop  36240  line2ylem  47427
  Copyright terms: Public domain W3C validator