MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2anbr Structured version   Visualization version   GIF version

Theorem syl2anbr 599
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.)
Hypotheses
Ref Expression
syl2anbr.1 (𝜓𝜑)
syl2anbr.2 (𝜒𝜏)
syl2anbr.3 ((𝜓𝜒) → 𝜃)
Assertion
Ref Expression
syl2anbr ((𝜑𝜏) → 𝜃)

Proof of Theorem syl2anbr
StepHypRef Expression
1 syl2anbr.2 . 2 (𝜒𝜏)
2 syl2anbr.1 . . 3 (𝜓𝜑)
3 syl2anbr.3 . . 3 ((𝜓𝜒) → 𝜃)
42, 3sylanbr 582 . 2 ((𝜑𝜒) → 𝜃)
51, 4sylan2br 595 1 ((𝜑𝜏) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  sylancbr  601  reusv2  5401  rexopabb  5528  tz6.12  6916  r1ord3  9779  brdom7disj  10528  brdom6disj  10529  alephadd  10574  ltresr  11137  divmuldiv  11916  fnn0ind  12663  rexanuz  15294  nprmi  16628  lsmvalx  19509  cncfval  24411  angval  26313  amgmlem  26501  sspval  30014  sshjval  30641  sshjval3  30645  hosmval  31026  hodmval  31028  hfsmval  31029  opreu2reuALT  31755  broutsideof3  35167  mptsnunlem  36305  relowlpssretop  36331  line2ylem  47515
  Copyright terms: Public domain W3C validator