MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2anbr Structured version   Visualization version   GIF version

Theorem syl2anbr 599
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.)
Hypotheses
Ref Expression
syl2anbr.1 (𝜓𝜑)
syl2anbr.2 (𝜒𝜏)
syl2anbr.3 ((𝜓𝜒) → 𝜃)
Assertion
Ref Expression
syl2anbr ((𝜑𝜏) → 𝜃)

Proof of Theorem syl2anbr
StepHypRef Expression
1 syl2anbr.2 . 2 (𝜒𝜏)
2 syl2anbr.1 . . 3 (𝜓𝜑)
3 syl2anbr.3 . . 3 ((𝜓𝜒) → 𝜃)
42, 3sylanbr 582 . 2 ((𝜑𝜒) → 𝜃)
51, 4sylan2br 595 1 ((𝜑𝜏) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  sylancbr  601  reusv2  5358  rexopabb  5488  tz6.12  6883  r1ord3  9735  brdom7disj  10484  brdom6disj  10485  alephadd  10530  ltresr  11093  divmuldiv  11882  fnn0ind  12633  rexanuz  15312  nprmi  16659  lsmvalx  19569  cncfval  24781  angval  26711  amgmlem  26900  sspval  30652  sshjval  31279  sshjval3  31283  hosmval  31664  hodmval  31666  hfsmval  31667  opreu2reuALT  32406  broutsideof3  36114  mptsnunlem  37326  relowlpssretop  37352  permac8prim  45004  line2ylem  48740
  Copyright terms: Public domain W3C validator