MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2anbr Structured version   Visualization version   GIF version

Theorem syl2anbr 599
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.)
Hypotheses
Ref Expression
syl2anbr.1 (𝜓𝜑)
syl2anbr.2 (𝜒𝜏)
syl2anbr.3 ((𝜓𝜒) → 𝜃)
Assertion
Ref Expression
syl2anbr ((𝜑𝜏) → 𝜃)

Proof of Theorem syl2anbr
StepHypRef Expression
1 syl2anbr.2 . 2 (𝜒𝜏)
2 syl2anbr.1 . . 3 (𝜓𝜑)
3 syl2anbr.3 . . 3 ((𝜓𝜒) → 𝜃)
42, 3sylanbr 582 . 2 ((𝜑𝜒) → 𝜃)
51, 4sylan2br 595 1 ((𝜑𝜏) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  sylancbr  601  reusv2  5378  rexopabb  5508  tz6.12  6906  r1ord3  9801  brdom7disj  10550  brdom6disj  10551  alephadd  10596  ltresr  11159  divmuldiv  11946  fnn0ind  12697  rexanuz  15369  nprmi  16713  lsmvalx  19625  cncfval  24837  angval  26768  amgmlem  26957  sspval  30709  sshjval  31336  sshjval3  31340  hosmval  31721  hodmval  31723  hfsmval  31724  opreu2reuALT  32463  broutsideof3  36149  mptsnunlem  37361  relowlpssretop  37387  line2ylem  48698
  Copyright terms: Public domain W3C validator