| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2anbr | Structured version Visualization version GIF version | ||
| Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
| Ref | Expression |
|---|---|
| syl2anbr.1 | ⊢ (𝜓 ↔ 𝜑) |
| syl2anbr.2 | ⊢ (𝜒 ↔ 𝜏) |
| syl2anbr.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| syl2anbr | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anbr.2 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
| 2 | syl2anbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 3 | syl2anbr.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylanbr 582 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | sylan2br 595 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylancbr 601 reusv2 5341 rexopabb 5468 tz6.12 6846 r1ord3 9675 brdom7disj 10422 brdom6disj 10423 alephadd 10468 ltresr 11031 divmuldiv 11821 fnn0ind 12572 rexanuz 15253 nprmi 16600 lsmvalx 19552 cncfval 24809 angval 26739 amgmlem 26928 sspval 30701 sshjval 31328 sshjval3 31332 hosmval 31713 hodmval 31715 hfsmval 31716 opreu2reuALT 32454 broutsideof3 36166 mptsnunlem 37378 relowlpssretop 37404 permac8prim 45053 line2ylem 48789 |
| Copyright terms: Public domain | W3C validator |