![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2anbr | Structured version Visualization version GIF version |
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
Ref | Expression |
---|---|
syl2anbr.1 | ⊢ (𝜓 ↔ 𝜑) |
syl2anbr.2 | ⊢ (𝜒 ↔ 𝜏) |
syl2anbr.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
syl2anbr | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anbr.2 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
2 | syl2anbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
3 | syl2anbr.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylanbr 582 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | sylan2br 595 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: sylancbr 601 reusv2 5401 rexopabb 5528 tz6.12 6916 r1ord3 9776 brdom7disj 10525 brdom6disj 10526 alephadd 10571 ltresr 11134 divmuldiv 11913 fnn0ind 12660 rexanuz 15291 nprmi 16625 lsmvalx 19506 cncfval 24403 angval 26303 amgmlem 26491 sspval 29971 sshjval 30598 sshjval3 30602 hosmval 30983 hodmval 30985 hfsmval 30986 opreu2reuALT 31712 broutsideof3 35093 mptsnunlem 36214 relowlpssretop 36240 line2ylem 47427 |
Copyright terms: Public domain | W3C validator |