| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2anbr | Structured version Visualization version GIF version | ||
| Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
| Ref | Expression |
|---|---|
| syl2anbr.1 | ⊢ (𝜓 ↔ 𝜑) |
| syl2anbr.2 | ⊢ (𝜒 ↔ 𝜏) |
| syl2anbr.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| syl2anbr | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anbr.2 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
| 2 | syl2anbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 3 | syl2anbr.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylanbr 582 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | sylan2br 595 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylancbr 601 reusv2 5378 rexopabb 5508 tz6.12 6906 r1ord3 9801 brdom7disj 10550 brdom6disj 10551 alephadd 10596 ltresr 11159 divmuldiv 11946 fnn0ind 12697 rexanuz 15369 nprmi 16713 lsmvalx 19625 cncfval 24837 angval 26768 amgmlem 26957 sspval 30709 sshjval 31336 sshjval3 31340 hosmval 31721 hodmval 31723 hfsmval 31724 opreu2reuALT 32463 broutsideof3 36149 mptsnunlem 37361 relowlpssretop 37387 line2ylem 48698 |
| Copyright terms: Public domain | W3C validator |