| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2anbr | Structured version Visualization version GIF version | ||
| Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
| Ref | Expression |
|---|---|
| syl2anbr.1 | ⊢ (𝜓 ↔ 𝜑) |
| syl2anbr.2 | ⊢ (𝜒 ↔ 𝜏) |
| syl2anbr.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| syl2anbr | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anbr.2 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
| 2 | syl2anbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 3 | syl2anbr.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylanbr 582 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | sylan2br 595 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylancbr 601 reusv2 5358 rexopabb 5488 tz6.12 6883 r1ord3 9735 brdom7disj 10484 brdom6disj 10485 alephadd 10530 ltresr 11093 divmuldiv 11882 fnn0ind 12633 rexanuz 15312 nprmi 16659 lsmvalx 19569 cncfval 24781 angval 26711 amgmlem 26900 sspval 30652 sshjval 31279 sshjval3 31283 hosmval 31664 hodmval 31666 hfsmval 31667 opreu2reuALT 32406 broutsideof3 36114 mptsnunlem 37326 relowlpssretop 37352 permac8prim 45004 line2ylem 48740 |
| Copyright terms: Public domain | W3C validator |