MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2anbr Structured version   Visualization version   GIF version

Theorem syl2anbr 599
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.)
Hypotheses
Ref Expression
syl2anbr.1 (𝜓𝜑)
syl2anbr.2 (𝜒𝜏)
syl2anbr.3 ((𝜓𝜒) → 𝜃)
Assertion
Ref Expression
syl2anbr ((𝜑𝜏) → 𝜃)

Proof of Theorem syl2anbr
StepHypRef Expression
1 syl2anbr.2 . 2 (𝜒𝜏)
2 syl2anbr.1 . . 3 (𝜓𝜑)
3 syl2anbr.3 . . 3 ((𝜓𝜒) → 𝜃)
42, 3sylanbr 582 . 2 ((𝜑𝜒) → 𝜃)
51, 4sylan2br 595 1 ((𝜑𝜏) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  sylancbr  601  reusv2  5345  rexopabb  5473  tz6.12  6854  r1ord3  9684  brdom7disj  10431  brdom6disj  10432  alephadd  10477  ltresr  11040  divmuldiv  11830  fnn0ind  12580  rexanuz  15257  nprmi  16604  lsmvalx  19555  cncfval  24811  angval  26741  amgmlem  26930  sspval  30707  sshjval  31334  sshjval3  31338  hosmval  31719  hodmval  31721  hfsmval  31722  opreu2reuALT  32460  broutsideof3  36193  mptsnunlem  37405  relowlpssretop  37431  permac8prim  45134  line2ylem  48879
  Copyright terms: Public domain W3C validator