Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl2anbr | Structured version Visualization version GIF version |
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
Ref | Expression |
---|---|
syl2anbr.1 | ⊢ (𝜓 ↔ 𝜑) |
syl2anbr.2 | ⊢ (𝜒 ↔ 𝜏) |
syl2anbr.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
syl2anbr | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anbr.2 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
2 | syl2anbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
3 | syl2anbr.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylanbr 582 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | sylan2br 595 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: sylancbr 601 reusv2 5326 rexopabb 5441 tz6.12 6797 r1ord3 9540 brdom7disj 10287 brdom6disj 10288 alephadd 10333 ltresr 10896 divmuldiv 11675 fnn0ind 12419 rexanuz 15057 nprmi 16394 lsmvalx 19244 cncfval 24051 angval 25951 amgmlem 26139 sspval 29085 sshjval 29712 sshjval3 29716 hosmval 30097 hodmval 30099 hfsmval 30100 opreu2reuALT 30825 broutsideof3 34428 mptsnunlem 35509 relowlpssretop 35535 line2ylem 46097 |
Copyright terms: Public domain | W3C validator |