MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2anbr Structured version   Visualization version   GIF version

Theorem syl2anbr 599
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.)
Hypotheses
Ref Expression
syl2anbr.1 (𝜓𝜑)
syl2anbr.2 (𝜒𝜏)
syl2anbr.3 ((𝜓𝜒) → 𝜃)
Assertion
Ref Expression
syl2anbr ((𝜑𝜏) → 𝜃)

Proof of Theorem syl2anbr
StepHypRef Expression
1 syl2anbr.2 . 2 (𝜒𝜏)
2 syl2anbr.1 . . 3 (𝜓𝜑)
3 syl2anbr.3 . . 3 ((𝜓𝜒) → 𝜃)
42, 3sylanbr 582 . 2 ((𝜑𝜒) → 𝜃)
51, 4sylan2br 595 1 ((𝜑𝜏) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  sylancbr  601  reusv2  5341  rexopabb  5468  tz6.12  6846  r1ord3  9675  brdom7disj  10422  brdom6disj  10423  alephadd  10468  ltresr  11031  divmuldiv  11821  fnn0ind  12572  rexanuz  15253  nprmi  16600  lsmvalx  19552  cncfval  24809  angval  26739  amgmlem  26928  sspval  30701  sshjval  31328  sshjval3  31332  hosmval  31713  hodmval  31715  hfsmval  31716  opreu2reuALT  32454  broutsideof3  36166  mptsnunlem  37378  relowlpssretop  37404  permac8prim  45053  line2ylem  48789
  Copyright terms: Public domain W3C validator