![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2anbr | Structured version Visualization version GIF version |
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
Ref | Expression |
---|---|
syl2anbr.1 | ⊢ (𝜓 ↔ 𝜑) |
syl2anbr.2 | ⊢ (𝜒 ↔ 𝜏) |
syl2anbr.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
syl2anbr | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anbr.2 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
2 | syl2anbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
3 | syl2anbr.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylanbr 582 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | sylan2br 595 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: sylancbr 601 reusv2 5409 rexopabb 5538 tz6.12 6932 r1ord3 9820 brdom7disj 10569 brdom6disj 10570 alephadd 10615 ltresr 11178 divmuldiv 11965 fnn0ind 12715 rexanuz 15381 nprmi 16723 lsmvalx 19672 cncfval 24928 angval 26859 amgmlem 27048 sspval 30752 sshjval 31379 sshjval3 31383 hosmval 31764 hodmval 31766 hfsmval 31767 opreu2reuALT 32505 broutsideof3 36108 mptsnunlem 37321 relowlpssretop 37347 line2ylem 48601 |
Copyright terms: Public domain | W3C validator |