| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2anbr | Structured version Visualization version GIF version | ||
| Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
| Ref | Expression |
|---|---|
| syl2anbr.1 | ⊢ (𝜓 ↔ 𝜑) |
| syl2anbr.2 | ⊢ (𝜒 ↔ 𝜏) |
| syl2anbr.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| syl2anbr | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anbr.2 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
| 2 | syl2anbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 3 | syl2anbr.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylanbr 582 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | sylan2br 595 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylancbr 601 reusv2 5361 rexopabb 5491 tz6.12 6886 r1ord3 9742 brdom7disj 10491 brdom6disj 10492 alephadd 10537 ltresr 11100 divmuldiv 11889 fnn0ind 12640 rexanuz 15319 nprmi 16666 lsmvalx 19576 cncfval 24788 angval 26718 amgmlem 26907 sspval 30659 sshjval 31286 sshjval3 31290 hosmval 31671 hodmval 31673 hfsmval 31674 opreu2reuALT 32413 broutsideof3 36121 mptsnunlem 37333 relowlpssretop 37359 permac8prim 45011 line2ylem 48744 |
| Copyright terms: Public domain | W3C validator |