MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2anbr Structured version   Visualization version   GIF version

Theorem syl2anbr 598
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.)
Hypotheses
Ref Expression
syl2anbr.1 (𝜓𝜑)
syl2anbr.2 (𝜒𝜏)
syl2anbr.3 ((𝜓𝜒) → 𝜃)
Assertion
Ref Expression
syl2anbr ((𝜑𝜏) → 𝜃)

Proof of Theorem syl2anbr
StepHypRef Expression
1 syl2anbr.2 . 2 (𝜒𝜏)
2 syl2anbr.1 . . 3 (𝜓𝜑)
3 syl2anbr.3 . . 3 ((𝜓𝜒) → 𝜃)
42, 3sylanbr 581 . 2 ((𝜑𝜒) → 𝜃)
51, 4sylan2br 594 1 ((𝜑𝜏) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  sylancbr  600  reusv2  5321  rexopabb  5434  tz6.12  6779  r1ord3  9471  brdom7disj  10218  brdom6disj  10219  alephadd  10264  ltresr  10827  divmuldiv  11605  fnn0ind  12349  rexanuz  14985  nprmi  16322  lsmvalx  19159  cncfval  23957  angval  25856  amgmlem  26044  sspval  28986  sshjval  29613  sshjval3  29617  hosmval  29998  hodmval  30000  hfsmval  30001  opreu2reuALT  30726  broutsideof3  34355  mptsnunlem  35436  relowlpssretop  35462  line2ylem  45985
  Copyright terms: Public domain W3C validator