Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl2anbr | Structured version Visualization version GIF version |
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
Ref | Expression |
---|---|
syl2anbr.1 | ⊢ (𝜓 ↔ 𝜑) |
syl2anbr.2 | ⊢ (𝜒 ↔ 𝜏) |
syl2anbr.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
syl2anbr | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anbr.2 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
2 | syl2anbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
3 | syl2anbr.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylanbr 581 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | sylan2br 594 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: sylancbr 600 reusv2 5321 rexopabb 5434 tz6.12 6779 r1ord3 9471 brdom7disj 10218 brdom6disj 10219 alephadd 10264 ltresr 10827 divmuldiv 11605 fnn0ind 12349 rexanuz 14985 nprmi 16322 lsmvalx 19159 cncfval 23957 angval 25856 amgmlem 26044 sspval 28986 sshjval 29613 sshjval3 29617 hosmval 29998 hodmval 30000 hfsmval 30001 opreu2reuALT 30726 broutsideof3 34355 mptsnunlem 35436 relowlpssretop 35462 line2ylem 45985 |
Copyright terms: Public domain | W3C validator |