MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2anbr Structured version   Visualization version   GIF version

Theorem syl2anbr 599
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.)
Hypotheses
Ref Expression
syl2anbr.1 (𝜓𝜑)
syl2anbr.2 (𝜒𝜏)
syl2anbr.3 ((𝜓𝜒) → 𝜃)
Assertion
Ref Expression
syl2anbr ((𝜑𝜏) → 𝜃)

Proof of Theorem syl2anbr
StepHypRef Expression
1 syl2anbr.2 . 2 (𝜒𝜏)
2 syl2anbr.1 . . 3 (𝜓𝜑)
3 syl2anbr.3 . . 3 ((𝜓𝜒) → 𝜃)
42, 3sylanbr 582 . 2 ((𝜑𝜒) → 𝜃)
51, 4sylan2br 595 1 ((𝜑𝜏) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  sylancbr  601  reusv2  5361  rexopabb  5491  tz6.12  6886  r1ord3  9742  brdom7disj  10491  brdom6disj  10492  alephadd  10537  ltresr  11100  divmuldiv  11889  fnn0ind  12640  rexanuz  15319  nprmi  16666  lsmvalx  19576  cncfval  24788  angval  26718  amgmlem  26907  sspval  30659  sshjval  31286  sshjval3  31290  hosmval  31671  hodmval  31673  hfsmval  31674  opreu2reuALT  32413  broutsideof3  36121  mptsnunlem  37333  relowlpssretop  37359  permac8prim  45011  line2ylem  48744
  Copyright terms: Public domain W3C validator