MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2anbr Structured version   Visualization version   GIF version

Theorem syl2anbr 598
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.)
Hypotheses
Ref Expression
syl2anbr.1 (𝜓𝜑)
syl2anbr.2 (𝜒𝜏)
syl2anbr.3 ((𝜓𝜒) → 𝜃)
Assertion
Ref Expression
syl2anbr ((𝜑𝜏) → 𝜃)

Proof of Theorem syl2anbr
StepHypRef Expression
1 syl2anbr.2 . 2 (𝜒𝜏)
2 syl2anbr.1 . . 3 (𝜓𝜑)
3 syl2anbr.3 . . 3 ((𝜓𝜒) → 𝜃)
42, 3sylanbr 581 . 2 ((𝜑𝜒) → 𝜃)
51, 4sylan2br 594 1 ((𝜑𝜏) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  sylancbr  600  reusv2  5421  rexopabb  5547  tz6.12  6945  r1ord3  9851  brdom7disj  10600  brdom6disj  10601  alephadd  10646  ltresr  11209  divmuldiv  11994  fnn0ind  12742  rexanuz  15394  nprmi  16736  lsmvalx  19681  cncfval  24933  angval  26862  amgmlem  27051  sspval  30755  sshjval  31382  sshjval3  31386  hosmval  31767  hodmval  31769  hfsmval  31770  opreu2reuALT  32505  broutsideof3  36090  mptsnunlem  37304  relowlpssretop  37330  line2ylem  48485
  Copyright terms: Public domain W3C validator