| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2anbr | Structured version Visualization version GIF version | ||
| Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
| Ref | Expression |
|---|---|
| syl2anbr.1 | ⊢ (𝜓 ↔ 𝜑) |
| syl2anbr.2 | ⊢ (𝜒 ↔ 𝜏) |
| syl2anbr.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| syl2anbr | ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anbr.2 | . 2 ⊢ (𝜒 ↔ 𝜏) | |
| 2 | syl2anbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 3 | syl2anbr.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylanbr 582 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | sylan2br 595 | 1 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sylancbr 601 reusv2 5345 rexopabb 5473 tz6.12 6854 r1ord3 9684 brdom7disj 10431 brdom6disj 10432 alephadd 10477 ltresr 11040 divmuldiv 11830 fnn0ind 12580 rexanuz 15257 nprmi 16604 lsmvalx 19555 cncfval 24811 angval 26741 amgmlem 26930 sspval 30707 sshjval 31334 sshjval3 31338 hosmval 31719 hodmval 31721 hfsmval 31722 opreu2reuALT 32460 broutsideof3 36193 mptsnunlem 37405 relowlpssretop 37431 permac8prim 45134 line2ylem 48879 |
| Copyright terms: Public domain | W3C validator |