Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-cbv3ta Structured version   Visualization version   GIF version

Theorem bj-cbv3ta 34705
Description: Closed form of cbv3 2396. (Contributed by BJ, 2-May-2019.)
Assertion
Ref Expression
bj-cbv3ta (∀𝑥𝑦(𝑥 = 𝑦 → (𝜑𝜓)) → ((∀𝑦(∃𝑥𝜓𝜓) ∧ ∀𝑥(𝜑 → ∀𝑦𝜑)) → (∀𝑥𝜑 → ∀𝑦𝜓)))

Proof of Theorem bj-cbv3ta
StepHypRef Expression
1 bj-spimt2 34704 . . . . . 6 (∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → ((∃𝑥𝜓𝜓) → (∀𝑥𝜑𝜓)))
21imp 410 . . . . 5 ((∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) ∧ (∃𝑥𝜓𝜓)) → (∀𝑥𝜑𝜓))
32alanimi 1824 . . . 4 ((∀𝑦𝑥(𝑥 = 𝑦 → (𝜑𝜓)) ∧ ∀𝑦(∃𝑥𝜓𝜓)) → ∀𝑦(∀𝑥𝜑𝜓))
4 bj-hbalt 34600 . . . 4 (∀𝑥(𝜑 → ∀𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦𝑥𝜑))
5 sylgt 1829 . . . 4 (∀𝑦(∀𝑥𝜑𝜓) → ((∀𝑥𝜑 → ∀𝑦𝑥𝜑) → (∀𝑥𝜑 → ∀𝑦𝜓)))
63, 4, 5syl2im 40 . . 3 ((∀𝑦𝑥(𝑥 = 𝑦 → (𝜑𝜓)) ∧ ∀𝑦(∃𝑥𝜓𝜓)) → (∀𝑥(𝜑 → ∀𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦𝜓)))
76expimpd 457 . 2 (∀𝑦𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → ((∀𝑦(∃𝑥𝜓𝜓) ∧ ∀𝑥(𝜑 → ∀𝑦𝜑)) → (∀𝑥𝜑 → ∀𝑦𝜓)))
87alcoms 2159 1 (∀𝑥𝑦(𝑥 = 𝑦 → (𝜑𝜓)) → ((∀𝑦(∃𝑥𝜓𝜓) ∧ ∀𝑥(𝜑 → ∀𝑦𝜑)) → (∀𝑥𝜑 → ∀𝑦𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1541  wex 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-11 2158  ax-12 2175  ax-13 2371
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1788
This theorem is referenced by:  bj-cbv3tb  34706
  Copyright terms: Public domain W3C validator