Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cbv3ta | Structured version Visualization version GIF version |
Description: Closed form of cbv3 2397. (Contributed by BJ, 2-May-2019.) |
Ref | Expression |
---|---|
bj-cbv3ta | ⊢ (∀𝑥∀𝑦(𝑥 = 𝑦 → (𝜑 → 𝜓)) → ((∀𝑦(∃𝑥𝜓 → 𝜓) ∧ ∀𝑥(𝜑 → ∀𝑦𝜑)) → (∀𝑥𝜑 → ∀𝑦𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-spimt2 34894 | . . . . . 6 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → ((∃𝑥𝜓 → 𝜓) → (∀𝑥𝜑 → 𝜓))) | |
2 | 1 | imp 406 | . . . . 5 ⊢ ((∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) ∧ (∃𝑥𝜓 → 𝜓)) → (∀𝑥𝜑 → 𝜓)) |
3 | 2 | alanimi 1820 | . . . 4 ⊢ ((∀𝑦∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) ∧ ∀𝑦(∃𝑥𝜓 → 𝜓)) → ∀𝑦(∀𝑥𝜑 → 𝜓)) |
4 | bj-hbalt 34790 | . . . 4 ⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑)) | |
5 | sylgt 1825 | . . . 4 ⊢ (∀𝑦(∀𝑥𝜑 → 𝜓) → ((∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) → (∀𝑥𝜑 → ∀𝑦𝜓))) | |
6 | 3, 4, 5 | syl2im 40 | . . 3 ⊢ ((∀𝑦∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) ∧ ∀𝑦(∃𝑥𝜓 → 𝜓)) → (∀𝑥(𝜑 → ∀𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦𝜓))) |
7 | 6 | expimpd 453 | . 2 ⊢ (∀𝑦∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → ((∀𝑦(∃𝑥𝜓 → 𝜓) ∧ ∀𝑥(𝜑 → ∀𝑦𝜑)) → (∀𝑥𝜑 → ∀𝑦𝜓))) |
8 | 7 | alcoms 2157 | 1 ⊢ (∀𝑥∀𝑦(𝑥 = 𝑦 → (𝜑 → 𝜓)) → ((∀𝑦(∃𝑥𝜓 → 𝜓) ∧ ∀𝑥(𝜑 → ∀𝑦𝜑)) → (∀𝑥𝜑 → ∀𝑦𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-11 2156 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: bj-cbv3tb 34896 |
Copyright terms: Public domain | W3C validator |