Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 3albii | Structured version Visualization version GIF version |
Description: Inference adding three universal quantifiers to both sides of an equivalence. (Contributed by Peter Mazsa, 10-Aug-2018.) |
Ref | Expression |
---|---|
3albii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
3albii | ⊢ (∀𝑥∀𝑦∀𝑧𝜑 ↔ ∀𝑥∀𝑦∀𝑧𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3albii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | 2albii 1822 | . 2 ⊢ (∀𝑦∀𝑧𝜑 ↔ ∀𝑦∀𝑧𝜓) |
3 | 2 | albii 1821 | 1 ⊢ (∀𝑥∀𝑦∀𝑧𝜑 ↔ ∀𝑥∀𝑦∀𝑧𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∀wal 1536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: cosscnvssid3 36156 dfeldisj3 36392 |
Copyright terms: Public domain | W3C validator |