MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3albii Structured version   Visualization version   GIF version

Theorem 3albii 1821
Description: Inference adding three universal quantifiers to both sides of an equivalence. (Contributed by Peter Mazsa, 10-Aug-2018.)
Hypothesis
Ref Expression
albii.1 (𝜑𝜓)
Assertion
Ref Expression
3albii (∀𝑥𝑦𝑧𝜑 ↔ ∀𝑥𝑦𝑧𝜓)

Proof of Theorem 3albii
StepHypRef Expression
1 albii.1 . . 3 (𝜑𝜓)
212albii 1820 . 2 (∀𝑦𝑧𝜑 ↔ ∀𝑦𝑧𝜓)
32albii 1819 1 (∀𝑥𝑦𝑧𝜑 ↔ ∀𝑥𝑦𝑧𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  dffun2  6571  dffun2OLD  6572  frpoins3xp3g  8166  xpord3inddlem  8179  cosscnvssid3  38477  dfeldisj3  38720
  Copyright terms: Public domain W3C validator