Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3albii Structured version   Visualization version   GIF version

Theorem 3albii 35949
Description: Inference adding three universal quantifiers to both sides of an equivalence. (Contributed by Peter Mazsa, 10-Aug-2018.)
Hypothesis
Ref Expression
3albii.1 (𝜑𝜓)
Assertion
Ref Expression
3albii (∀𝑥𝑦𝑧𝜑 ↔ ∀𝑥𝑦𝑧𝜓)

Proof of Theorem 3albii
StepHypRef Expression
1 3albii.1 . . 3 (𝜑𝜓)
212albii 1822 . 2 (∀𝑦𝑧𝜑 ↔ ∀𝑦𝑧𝜓)
32albii 1821 1 (∀𝑥𝑦𝑧𝜑 ↔ ∀𝑥𝑦𝑧𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wal 1536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811
This theorem depends on definitions:  df-bi 210
This theorem is referenced by:  cosscnvssid3  36156  dfeldisj3  36392
  Copyright terms: Public domain W3C validator