Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ts3an2 | Structured version Visualization version GIF version |
Description: A Tseitin axiom for triple logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
Ref | Expression |
---|---|
ts3an2 | ⊢ (𝜃 → ((𝜑 ∧ 𝜓) ∨ ¬ (𝜑 ∧ 𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsan2 36227 | . 2 ⊢ (𝜃 → ((𝜑 ∧ 𝜓) ∨ ¬ ((𝜑 ∧ 𝜓) ∧ 𝜒))) | |
2 | df-3an 1087 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
3 | 2 | notbii 319 | . . 3 ⊢ (¬ (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ¬ ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
4 | 3 | orbi2i 909 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ ¬ (𝜑 ∧ 𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ ¬ ((𝜑 ∧ 𝜓) ∧ 𝜒))) |
5 | 1, 4 | sylibr 233 | 1 ⊢ (𝜃 → ((𝜑 ∧ 𝜓) ∨ ¬ (𝜑 ∧ 𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |