Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tsan2 Structured version   Visualization version   GIF version

Theorem tsan2 36227
Description: A Tseitin axiom for logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.)
Assertion
Ref Expression
tsan2 (𝜃 → (𝜑 ∨ ¬ (𝜑𝜓)))

Proof of Theorem tsan2
StepHypRef Expression
1 pm3.14 992 . . . 4 ((¬ 𝜑 ∨ ¬ 𝜓) → ¬ (𝜑𝜓))
21orcs 871 . . 3 𝜑 → ¬ (𝜑𝜓))
32orri 858 . 2 (𝜑 ∨ ¬ (𝜑𝜓))
43a1i 11 1 (𝜃 → (𝜑 ∨ ¬ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844
This theorem is referenced by:  tsna2  36230  ts3an2  36236  mpobi123f  36247  mptbi12f  36251
  Copyright terms: Public domain W3C validator