Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ts3an3 Structured version   Visualization version   GIF version

Theorem ts3an3 36289
Description: A Tseitin axiom for triple logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.)
Assertion
Ref Expression
ts3an3 (𝜃 → (𝜒 ∨ ¬ (𝜑𝜓𝜒)))

Proof of Theorem ts3an3
StepHypRef Expression
1 tsan3 36280 . 2 (𝜃 → (𝜒 ∨ ¬ ((𝜑𝜓) ∧ 𝜒)))
2 df-3an 1087 . . . 4 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
32notbii 319 . . 3 (¬ (𝜑𝜓𝜒) ↔ ¬ ((𝜑𝜓) ∧ 𝜒))
43orbi2i 909 . 2 ((𝜒 ∨ ¬ (𝜑𝜓𝜒)) ↔ (𝜒 ∨ ¬ ((𝜑𝜓) ∧ 𝜒)))
51, 4sylibr 233 1 (𝜃 → (𝜒 ∨ ¬ (𝜑𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator