| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ts3or1 | Structured version Visualization version GIF version | ||
| Description: A Tseitin axiom for triple logical disjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
| Ref | Expression |
|---|---|
| ts3or1 | ⊢ (𝜃 → (((𝜑 ∨ 𝜓) ∨ 𝜒) ∨ ¬ (𝜑 ∨ 𝜓 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmidd 896 | . 2 ⊢ (𝜃 → (((𝜑 ∨ 𝜓) ∨ 𝜒) ∨ ¬ ((𝜑 ∨ 𝜓) ∨ 𝜒))) | |
| 2 | df-3or 1088 | . . . 4 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
| 3 | 2 | notbii 320 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ¬ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
| 4 | 3 | orbi2i 913 | . 2 ⊢ ((((𝜑 ∨ 𝜓) ∨ 𝜒) ∨ ¬ (𝜑 ∨ 𝜓 ∨ 𝜒)) ↔ (((𝜑 ∨ 𝜓) ∨ 𝜒) ∨ ¬ ((𝜑 ∨ 𝜓) ∨ 𝜒))) |
| 5 | 1, 4 | sylibr 234 | 1 ⊢ (𝜃 → (((𝜑 ∨ 𝜓) ∨ 𝜒) ∨ ¬ (𝜑 ∨ 𝜓 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 848 ∨ w3o 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 849 df-3or 1088 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |