Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exmidd | Structured version Visualization version GIF version |
Description: Law of excluded middle in a context. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
exmidd | ⊢ (𝜑 → (𝜓 ∨ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid 891 | . 2 ⊢ (𝜓 ∨ ¬ 𝜓) | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → (𝜓 ∨ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: rabxm 4317 zeo3 15974 hashxpe 31029 tlt2 31149 fsumcvg4 31802 chtvalz 32509 tsor1 36232 ts3or1 36238 aks4d1p5 40016 |
Copyright terms: Public domain | W3C validator |