|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > exmidd | Structured version Visualization version GIF version | ||
| Description: Law of excluded middle in a context. (Contributed by Mario Carneiro, 9-Feb-2017.) | 
| Ref | Expression | 
|---|---|
| exmidd | ⊢ (𝜑 → (𝜓 ∨ ¬ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exmid 894 | . 2 ⊢ (𝜓 ∨ ¬ 𝜓) | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → (𝜓 ∨ ¬ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-or 848 | 
| This theorem is referenced by: rabxm 4389 zeo3 16375 hashxpe 32812 tlt2 32960 fsumcvg4 33950 chtvalz 34645 tsor1 38155 ts3or1 38161 aks4d1p5 42082 | 
| Copyright terms: Public domain | W3C validator |