MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exmidd Structured version   Visualization version   GIF version

Theorem exmidd 893
Description: Law of excluded middle in a context. (Contributed by Mario Carneiro, 9-Feb-2017.)
Assertion
Ref Expression
exmidd (𝜑 → (𝜓 ∨ ¬ 𝜓))

Proof of Theorem exmidd
StepHypRef Expression
1 exmid 892 . 2 (𝜓 ∨ ¬ 𝜓)
21a1i 11 1 (𝜑 → (𝜓 ∨ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845
This theorem is referenced by:  rabxm  4326  zeo3  16036  hashxpe  31115  tlt2  31235  fsumcvg4  31888  chtvalz  32597  tsor1  36293  ts3or1  36299  aks4d1p5  40077
  Copyright terms: Public domain W3C validator