Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tsna3 Structured version   Visualization version   GIF version

Theorem tsna3 36283
Description: A Tseitin axiom for logical incompatibility, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.)
Assertion
Ref Expression
tsna3 (𝜃 → (𝜓 ∨ (𝜑𝜓)))

Proof of Theorem tsna3
StepHypRef Expression
1 tsan3 36280 . 2 (𝜃 → (𝜓 ∨ ¬ (𝜑𝜓)))
2 df-nan 1486 . . 3 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
32orbi2i 909 . 2 ((𝜓 ∨ (𝜑𝜓)) ↔ (𝜓 ∨ ¬ (𝜑𝜓)))
41, 3sylibr 233 1 (𝜃 → (𝜓 ∨ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  wnan 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-nan 1486
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator