Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tsan3 Structured version   Visualization version   GIF version

Theorem tsan3 36301
Description: A Tseitin axiom for logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.)
Assertion
Ref Expression
tsan3 (𝜃 → (𝜓 ∨ ¬ (𝜑𝜓)))

Proof of Theorem tsan3
StepHypRef Expression
1 pm3.14 993 . . . 4 ((¬ 𝜑 ∨ ¬ 𝜓) → ¬ (𝜑𝜓))
21olcs 873 . . 3 𝜓 → ¬ (𝜑𝜓))
32orri 859 . 2 (𝜓 ∨ ¬ (𝜑𝜓))
43a1i 11 1 (𝜃 → (𝜓 ∨ ¬ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845
This theorem is referenced by:  tsna3  36304  ts3an3  36310  mpobi123f  36320  mptbi12f  36324
  Copyright terms: Public domain W3C validator