MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unitreslOLD Structured version   Visualization version   GIF version

Theorem unitreslOLD 875
Description: Obsolete version of olcnd 874 as of 13-Apr-2024. (Contributed by Giovanni Mascellani, 15-Sep-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
olcnd.1 (𝜑 → (𝜓𝜒))
olcnd.2 (𝜑 → ¬ 𝜒)
Assertion
Ref Expression
unitreslOLD (𝜑𝜓)

Proof of Theorem unitreslOLD
StepHypRef Expression
1 olcnd.1 . 2 (𝜑 → (𝜓𝜒))
2 olcnd.2 . 2 (𝜑 → ¬ 𝜒)
3 orcom 867 . . 3 ((𝜓𝜒) ↔ (𝜒𝜓))
4 df-or 845 . . 3 ((𝜒𝜓) ↔ (¬ 𝜒𝜓))
53, 4sylbb 218 . 2 ((𝜓𝜒) → (¬ 𝜒𝜓))
61, 2, 5sylc 65 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator