Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orcnd | Structured version Visualization version GIF version |
Description: A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
Ref | Expression |
---|---|
orcnd.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
orcnd.2 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
orcnd | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcnd.1 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | 1 | orcomd 867 | . 2 ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
3 | orcnd.2 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
4 | 2, 3 | olcnd 873 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: fpwwe2lem12 10329 evlslem3 21200 fzone1 31023 mxidlprm 31542 poxp2 33717 poxp3 33723 |
Copyright terms: Public domain | W3C validator |