| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orcnd | Structured version Visualization version GIF version | ||
| Description: A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
| Ref | Expression |
|---|---|
| orcnd.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| orcnd.2 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| orcnd | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcnd.1 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
| 2 | 1 | orcomd 871 | . 2 ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
| 3 | orcnd.2 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 4 | 2, 3 | olcnd 877 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: poxp2 8122 poxp3 8129 nnaordex2 8603 fpwwe2lem12 10595 evlslem3 21987 psdmul 22053 fzone1 32723 ccatws1f1o 32873 chnub 32938 0ringsubrg 33202 drngidl 33404 mxidlmaxv 33439 mxidlprm 33441 rprmasso2 33497 1arithidom 33508 zringidom 33522 fldext2chn 33718 aks6d1c2p2 42107 aks6d1c5 42127 |
| Copyright terms: Public domain | W3C validator |