MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orcnd Structured version   Visualization version   GIF version

Theorem orcnd 878
Description: A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
Hypotheses
Ref Expression
orcnd.1 (𝜑 → (𝜓𝜒))
orcnd.2 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
orcnd (𝜑𝜒)

Proof of Theorem orcnd
StepHypRef Expression
1 orcnd.1 . . 3 (𝜑 → (𝜓𝜒))
21orcomd 871 . 2 (𝜑 → (𝜒𝜓))
3 orcnd.2 . 2 (𝜑 → ¬ 𝜓)
42, 3olcnd 877 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  poxp2  8083  poxp3  8090  nnaordex2  8564  fpwwe2lem12  10555  evlslem3  22003  psdmul  22069  fzone1  32756  ccatws1f1o  32906  chnub  32967  0ringsubrg  33201  drngidl  33380  mxidlmaxv  33415  mxidlprm  33417  rprmasso2  33473  1arithidom  33484  zringidom  33498  fldext2chn  33694  aks6d1c2p2  42092  aks6d1c5  42112
  Copyright terms: Public domain W3C validator