MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orcnd Structured version   Visualization version   GIF version

Theorem orcnd 877
Description: A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
Hypotheses
Ref Expression
orcnd.1 (𝜑 → (𝜓𝜒))
orcnd.2 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
orcnd (𝜑𝜒)

Proof of Theorem orcnd
StepHypRef Expression
1 orcnd.1 . . 3 (𝜑 → (𝜓𝜒))
21orcomd 870 . 2 (𝜑 → (𝜒𝜓))
3 orcnd.2 . 2 (𝜑 → ¬ 𝜓)
42, 3olcnd 876 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 847
This theorem is referenced by:  poxp2  8184  poxp3  8191  nnaordex2  8695  fpwwe2lem12  10711  evlslem3  22127  psdmul  22193  fzone1  32805  ccatws1f1o  32918  chnub  32984  0ringsubrg  33223  drngidl  33426  mxidlmaxv  33461  mxidlprm  33463  rprmasso2  33519  1arithidom  33530  zringidom  33544  fldext2chn  33719  aks6d1c2p2  42076  aks6d1c5  42096
  Copyright terms: Public domain W3C validator