MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orcnd Structured version   Visualization version   GIF version

Theorem orcnd 878
Description: A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
Hypotheses
Ref Expression
orcnd.1 (𝜑 → (𝜓𝜒))
orcnd.2 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
orcnd (𝜑𝜒)

Proof of Theorem orcnd
StepHypRef Expression
1 orcnd.1 . . 3 (𝜑 → (𝜓𝜒))
21orcomd 871 . 2 (𝜑 → (𝜒𝜓))
3 orcnd.2 . 2 (𝜑 → ¬ 𝜓)
42, 3olcnd 877 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  elprn1  4604  poxp2  8073  poxp3  8080  nnaordex2  8554  fpwwe2lem12  10533  fzone1  13684  chnub  18528  evlslem3  22016  psdmul  22082  ccatws1f1o  32930  0ringsubrg  33216  drngidl  33396  mxidlmaxv  33431  mxidlprm  33433  rprmasso2  33489  1arithidom  33500  zringidom  33514  fldext2chn  33739  aks6d1c2p2  42158  aks6d1c5  42178
  Copyright terms: Public domain W3C validator