MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orcnd Structured version   Visualization version   GIF version

Theorem orcnd 878
Description: A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
Hypotheses
Ref Expression
orcnd.1 (𝜑 → (𝜓𝜒))
orcnd.2 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
orcnd (𝜑𝜒)

Proof of Theorem orcnd
StepHypRef Expression
1 orcnd.1 . . 3 (𝜑 → (𝜓𝜒))
21orcomd 871 . 2 (𝜑 → (𝜒𝜓))
3 orcnd.2 . 2 (𝜑 → ¬ 𝜓)
42, 3olcnd 877 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  poxp2  8142  poxp3  8149  nnaordex2  8651  fpwwe2lem12  10656  evlslem3  22038  psdmul  22104  fzone1  32777  ccatws1f1o  32927  chnub  32992  0ringsubrg  33246  drngidl  33448  mxidlmaxv  33483  mxidlprm  33485  rprmasso2  33541  1arithidom  33552  zringidom  33566  fldext2chn  33762  aks6d1c2p2  42132  aks6d1c5  42152
  Copyright terms: Public domain W3C validator