| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orcnd | Structured version Visualization version GIF version | ||
| Description: A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
| Ref | Expression |
|---|---|
| orcnd.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| orcnd.2 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| orcnd | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcnd.1 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
| 2 | 1 | orcomd 871 | . 2 ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
| 3 | orcnd.2 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 4 | 2, 3 | olcnd 877 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: elprn1 4603 poxp2 8079 poxp3 8086 nnaordex2 8560 fpwwe2lem12 10540 fzone1 13686 chnub 18530 evlslem3 22016 psdmul 22082 ccatws1f1o 32939 0ringsubrg 33225 drngidl 33405 mxidlmaxv 33440 mxidlprm 33442 rprmasso2 33498 1arithidom 33509 zringidom 33523 fldext2chn 33762 aks6d1c2p2 42233 aks6d1c5 42253 chnerlem1 47005 |
| Copyright terms: Public domain | W3C validator |