| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orcnd | Structured version Visualization version GIF version | ||
| Description: A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
| Ref | Expression |
|---|---|
| orcnd.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| orcnd.2 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| orcnd | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcnd.1 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
| 2 | 1 | orcomd 871 | . 2 ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
| 3 | orcnd.2 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 4 | 2, 3 | olcnd 877 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: poxp2 8083 poxp3 8090 nnaordex2 8564 fpwwe2lem12 10555 evlslem3 22003 psdmul 22069 fzone1 32756 ccatws1f1o 32906 chnub 32967 0ringsubrg 33201 drngidl 33380 mxidlmaxv 33415 mxidlprm 33417 rprmasso2 33473 1arithidom 33484 zringidom 33498 fldext2chn 33694 aks6d1c2p2 42092 aks6d1c5 42112 |
| Copyright terms: Public domain | W3C validator |