| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orcnd | Structured version Visualization version GIF version | ||
| Description: A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
| Ref | Expression |
|---|---|
| orcnd.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| orcnd.2 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| orcnd | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcnd.1 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
| 2 | 1 | orcomd 871 | . 2 ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
| 3 | orcnd.2 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 4 | 2, 3 | olcnd 877 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: poxp2 8125 poxp3 8132 nnaordex2 8606 fpwwe2lem12 10602 evlslem3 21994 psdmul 22060 fzone1 32730 ccatws1f1o 32880 chnub 32945 0ringsubrg 33209 drngidl 33411 mxidlmaxv 33446 mxidlprm 33448 rprmasso2 33504 1arithidom 33515 zringidom 33529 fldext2chn 33725 aks6d1c2p2 42114 aks6d1c5 42134 |
| Copyright terms: Public domain | W3C validator |