| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orcnd | Structured version Visualization version GIF version | ||
| Description: A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
| Ref | Expression |
|---|---|
| orcnd.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| orcnd.2 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| orcnd | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcnd.1 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
| 2 | 1 | orcomd 871 | . 2 ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
| 3 | orcnd.2 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 4 | 2, 3 | olcnd 877 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: poxp2 8142 poxp3 8149 nnaordex2 8651 fpwwe2lem12 10656 evlslem3 22038 psdmul 22104 fzone1 32777 ccatws1f1o 32927 chnub 32992 0ringsubrg 33246 drngidl 33448 mxidlmaxv 33483 mxidlprm 33485 rprmasso2 33541 1arithidom 33552 zringidom 33566 fldext2chn 33762 aks6d1c2p2 42132 aks6d1c5 42152 |
| Copyright terms: Public domain | W3C validator |