![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orcnd | Structured version Visualization version GIF version |
Description: A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
Ref | Expression |
---|---|
orcnd.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
orcnd.2 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
orcnd | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcnd.1 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | 1 | orcomd 870 | . 2 ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
3 | orcnd.2 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
4 | 2, 3 | olcnd 876 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 |
This theorem is referenced by: poxp2 8184 poxp3 8191 nnaordex2 8695 fpwwe2lem12 10711 evlslem3 22127 psdmul 22193 fzone1 32805 ccatws1f1o 32918 chnub 32984 0ringsubrg 33223 drngidl 33426 mxidlmaxv 33461 mxidlprm 33463 rprmasso2 33519 1arithidom 33530 zringidom 33544 fldext2chn 33719 aks6d1c2p2 42076 aks6d1c5 42096 |
Copyright terms: Public domain | W3C validator |